| L Number | Hits   | Search Text                                 | DB         | Time stamp       |
|----------|--------|---------------------------------------------|------------|------------------|
| 1        | 189534 | soil same contamination soil bind           | USPAT; EPO | 2004/08/30 09:37 |
| 2        | 87601  | soil same contamination soil bind same      | USPAT; EPO | 2004/08/30 09:38 |
|          |        | immobili\$4 same dissociat\$4               |            |                  |
| 3        | 0      | soil same contamination same bind same      | USPAT; EPO | 2004/08/30 09:38 |
|          |        | immobili\$4 same dissociat\$4               |            |                  |
| 4        | 0      | soil same contamination same immobili\$4    | USPAT; EPO | 2004/08/30 09:39 |
|          |        | same dissociat\$4                           |            |                  |
| 5        | 1      | soil same immobili\$4 same dissociat\$4     | USPAT; EPO | 2004/08/30 09:39 |
| 6        | 3      | ((heavy adj1 metal) or (organo near2        | USPAT; EPO | 2004/08/30 09:40 |
|          |        | halide)) same immobili\$4 same dissociat\$4 |            |                  |

| L Number | Hits | Search Text                                                                 | DB              | Time stamp         |
|----------|------|-----------------------------------------------------------------------------|-----------------|--------------------|
| 1        | 4623 | (pollutant or (heavy adj1 metal) or                                         | USPAT;          | 2004/08/30 08:40   |
|          |      | (organo near2 halide)) same (dissociat\$3                                   | US-PGPUB;       |                    |
|          |      | or associat\$3)                                                             | EPO;            |                    |
|          |      |                                                                             | DERWENT         |                    |
| 2        | 1478 | (pollutant or (heavy adj1 metal) or                                         | USPAT;          | 2004/08/30 09:06   |
|          |      | (organo near2 halide)) same (dissociat\$3                                   | US-PGPUB;       |                    |
|          |      | or associat\$3) same (reduc\$4 or inhibit\$3                                | EPO;            |                    |
|          |      | or prevent\$3)                                                              | DERWENT         |                    |
| 3        | 253  | (pollutant or (heavy adj1 metal) or                                         | USPAT;          | 2004/08/30 08:41   |
|          |      | (organo near2 halide)) near10 (dissociat\$3                                 | US-PGPUB;       |                    |
|          |      | or associat\$3) near12 (reduc\$4 or                                         | EPO;            |                    |
|          |      | inhibit\$3 or prevent\$3)                                                   | DERWENT         |                    |
| 4        | 206  | (pollutant or (heavy adj1 metal) or                                         | USPAT;          | 2004/08/30 08:41   |
|          |      | (organo near2 halide)) near8 (dissociat\$3                                  | US-PGPUB;       |                    |
|          |      | or associat\$3) near6 (reduc\$4 or inhibit\$3                               | EPO;            |                    |
| r.       |      | or prevent\$3)                                                              | DERWENT         |                    |
| 5        | 2    | (pollutant or (heavy adj1 metal) or                                         | USPAT;          | 2004/08/30 08:43   |
|          |      | (organo near2 halide)) near8 (dissociat\$3                                  | US-PGPUB;       |                    |
|          |      | or associat\$3) near5 bind\$3 near6 (reduc\$4                               | EPO;            |                    |
| 6        | 13   | or inhibit\$3 or prevent\$3)                                                | DERWENT         | 0000 (00 (00 00 00 |
| 0        | 13   | (pollutant or (heavy adj1 metal) or                                         | USPAT;          | 2004/08/30 08:50   |
|          |      | (organo near2 halide)) near8 (dissociat\$3<br>or associat\$3) near5 bind\$3 | US-PGPUB;       |                    |
|          |      | or associates) nears bindes                                                 | EPO;<br>DERWENT |                    |
| 7        | 130  | (pollutant or (heavy adj1 metal) or                                         | USPAT;          | 2004/08/30 08:51   |
| '        | 150  | (organo near2 halide)) near10 dissociat\$3                                  | US-PGPUB;       | 2004/08/30 08:51   |
|          |      | (organo nearz naride)) nearro dissociatos                                   | EPO;            |                    |
|          |      |                                                                             | DERWENT         |                    |
| 8        | 120  | ((pollutant or (heavy adj1 metal) or                                        | USPAT;          | 2004/08/30 08:51   |
| U        |      | (organo near2 halide)) near10 dissociat\$3                                  | US-PGPUB;       | 2004/08/30 08.31   |
|          |      | and @py<2004                                                                | EPO;            |                    |
|          |      |                                                                             | DERWENT         |                    |
| 9        | 73   | (((pollutant or (heavy adj1 metal) or                                       | USPAT;          | 2004/08/30 08:52   |
|          | -    | (organo near2 halide)) near10 dissociat\$3                                  | US-PGPUB;       | 2001/00/30 00.32   |
|          |      | ) and @py<2004) and (aquatic or                                             | EPO;            |                    |
|          |      | terrestrial or gaseous or industrial or                                     | DERWENT         |                    |
|          |      | environmental)                                                              |                 |                    |
| 10       | 8    | (pollutant or (heavy adj1 metal) or                                         | USPAT;          | 2004/08/30 09:07   |
|          |      | (organo near2 halide)) same (dissociat\$3                                   | US-PGPUB;       |                    |
|          |      | or associat\$3) same (reduc\$4 or inhibit\$3                                | EPO;            |                    |
|          |      | or prevent\$3) same immobili\$4                                             | DERWENT         |                    |

| L Number   | Hits | Search Text                                              | DB         | Time stamp       |
|------------|------|----------------------------------------------------------|------------|------------------|
| 1          | 0    | heavy near2 metal near10 immobili\$2 near                | USPAT; EPO | 2004/08/30 09:48 |
|            |      | protein                                                  |            |                  |
| 2          | 0    | heavy near2 metal near10 immobili\$2 near10              | USPAT; EPO | 2004/08/30 09:49 |
|            |      | protein                                                  |            |                  |
| 3          | 19   | heavy near2 metal near10 immobili\$2                     | USPAT; EPO | 2004/08/30 10:30 |
| 4          | 19   | (lead or mecury) near10 bind near10                      | USPAT; EPO | 2004/08/30 10:31 |
|            |      | immobili\$4                                              |            |                  |
| 5          | 0    | ((lead or mecury) near10 bind near10                     | USPAT; EPO | 2004/08/30 10:31 |
|            |      | immobili\$4) same (dissociat\$3 or                       |            |                  |
|            |      | associat\$3)                                             |            |                  |
| 6          | 0    | ((lead or mecury) near10 bind near10                     | USPAT; EPO | 2004/08/30 10:31 |
|            |      | immobili\$4) same dissociat\$3                           |            |                  |
| 8          | 2    | ((lead or mecury) near10 bind near10                     | USPAT;     | 2004/08/30 10:32 |
|            |      | immobili\$4) same (inhibit or prevent or                 | US-PGPUB;  |                  |
|            |      | reduc\$3)                                                | EPO;       |                  |
|            |      |                                                          | DERWENT    |                  |
| 7          | 36   | (lead or mecury) near10 bind near10                      | USPAT;     | 2004/08/30 10:42 |
|            |      | immobili\$4                                              | US-PGPUB;  |                  |
|            |      |                                                          | EPO;       |                  |
|            |      |                                                          | DERWENT    |                  |
| 9          | 66   | (lead or mercury or chromium or Cu or                    | USPAT;     | 2004/08/30 10:51 |
|            |      | cadimium or Cd or dioxin or PCB) same                    | US-PGPUB;  | -                |
|            |      | immobili\$6 same dissociat\$3                            | EPO;       |                  |
| 1.0        |      |                                                          | DERWENT    |                  |
| 10         | 24   | (lead or mercury or chromium or Cu or                    | USPAT;     | 2004/08/30 10:52 |
| ļ          |      | cadimium or Cd or dioxin or PCB) same                    | US-PGPUB;  |                  |
|            |      | immobili\$6 same dissociat\$3 same (detect               | EPO;       |                  |
| 11         | 20   | or identif\$5 or screen)                                 | DERWENT    |                  |
| <b>⊥</b> ⊥ | 38   | (lead or mercury or chromium or Cu or                    | USPAT;     | 2004/08/30 10:52 |
|            |      | cadimium or Cd or dioxin or PCB) same                    | US-PGPUB;  |                  |
|            |      | immobili\$6 same dissociat\$3 same (detect               | EPO;       | ·                |
|            |      | or identif\$5 or screen or evaluat\$4 or<br>determin\$3) | DERWENT    |                  |
| L          |      | deretmino)                                               |            |                  |

,

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID:ssspta1641cxc

PASSWORD: TERMINAL (ENTER 1, 2, 3, OR ?):2

\* \* \* \* \* Welcome to STN International NEWS Web Page URLs for STN Seminar Schedule - N. America 1 NEWS 2 "Ask CAS" for self-help around the clock NEWS 3 May 12 EXTEND option available in structure searching NEWS 4 May 12 Polymer links for the POLYLINK command completed in REGISTRY NEWS 5 May 27 New UPM (Update Code Maximum) field for more efficient patent SDIs in CAplus CAplus super roles and document types searchable in REGISTRY NEWS 6 May 27 NEWS 7 Jun 28 Additional enzyme-catalyzed reactions added to CASREACT NEWS 8 Jun 28 ANTE, AQUALINE, BIOENG, CIVILENG, ENVIROENG, MECHENG, and WATER from CSA now available on STN(R) Jul 12 BEILSTEIN enhanced with new display and select options, NEWS 9 resulting in a closer connection to BABS NEWS 10 Jul 30 BEILSTEIN on STN workshop to be held August 24 in conjunction with the 228th ACS National Meeting AUG 02 NEWS 11 IFIPAT/IFIUDB/IFICDB reloaded with new search and display fields AUG 02 NEWS 12 CAplus and CA patent records enhanced with European and Japan Patent Office Classifications NEWS 13 AUG 02 STN User Update to be held August 22 in conjunction with the 228th ACS National Meeting NEWS 14 AUG 02 The Analysis Edition of STN Express with Discover! (Version 7.01 for Windows) now available NEWS 15 AUG 04 Pricing for the Save Answers for SciFinder Wizard within STN Express with Discover! will change September 1, 2004 NEWS 16 AUG 27 BIOCOMMERCE: Changes and enhancements to content coverage BIOTECHABS/BIOTECHDS: Two new display fields added for legal NEWS 17 AUG 27 status data from INPADOC NEWS EXPRESS JULY 30 CURRENT WINDOWS VERSION IS V7.01, CURRENT MACINTOSH VERSION IS V6.0c(ENG) AND V6.0Jc(JP), AND CURRENT DISCOVER FILE IS DATED 11 AUGUST 2004 STN Operating Hours Plus Help Desk Availability NEWS HOURS NEWS INTER General Internet Information NEWS LOGIN Welcome Banner and News Items Direct Dial and Telecommunication Network Access to STN NEWS PHONE CAS World Wide Web Site (general information) NEWS WWW

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

\* \* \* \* \* \* \* \* \* \* \* \* \* STN Columbus \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \*

## FILE 'HOME' ENTERED AT 11:19:31 ON 30 AUG 2004

=> file .meeting 'EVENTLINE' IS NOT A VALID FILE NAME Enter "HELP FILE NAMES" at an arrow prompt (=>) for a list of files that are available. If you have requested multiple files, you can specify a corrected file name or you can enter "IGNORE" to continue accessing the remaining file names entered. ENTER A FILE NAME OR (IGNORE):ignore COST IN U.S. DOLLARS SINCE FILE TOTAL ENTRY SESSION

|  | FULL | ESTIMATED | COST |
|--|------|-----------|------|
|--|------|-----------|------|

...

FILE 'AGRICOLA' ENTERED AT 11:19:43 ON 30 AUG 2004

FILE 'BIOTECHNO' ENTERED AT 11:19:43 ON 30 AUG 2004 COPYRIGHT (C) 2004 Elsevier Science B.V., Amsterdam. All rights reserved.

0.21

0.21

FILE 'CONFSCI' ENTERED AT 11:19:43 ON 30 AUG 2004 COPYRIGHT (C) 2004 Cambridge Scientific Abstracts (CSA)

FILE 'HEALSAFE' ENTERED AT 11:19:43 ON 30 AUG 2004 COPYRIGHT (C) 2004 Cambridge Scientific Abstracts (CSA)

FILE 'IMSDRUGCONF' ENTERED AT 11:19:43 ON 30 AUG 2004 COPYRIGHT (C) 2004 IMSWORLD Publications Ltd.

FILE 'LIFESCI' ENTERED AT 11:19:43 ON 30 AUG 2004 COPYRIGHT (C) 2004 Cambridge Scientific Abstracts (CSA)

FILE 'MEDICONF' ENTERED AT 11:19:43 ON 30 AUG 2004 COPYRIGHT (c) 2004 FAIRBASE Datenbank GmbH, Hannover, Germany

FILE 'PASCAL' ENTERED AT 11:19:43 ON 30 AUG 2004 Any reproduction or dissemination in part or in full, by means of any process and on any support whatsoever is prohibited without the prior written agreement of INIST-CNRS. COPYRIGHT (C) 2004 INIST-CNRS. All rights reserved.

| =>            | (lead | or | mei | rcury | or  | chromium  | or | cadimium) | and | screen | and | immobili |
|---------------|-------|----|-----|-------|-----|-----------|----|-----------|-----|--------|-----|----------|
| . L1          |       |    | 0   | FILE  | AGI | RICOLA    |    |           |     |        |     |          |
| L2            |       |    | 0   | FILE  | BIC | DTECHNO   |    |           |     |        |     |          |
| L3            |       |    | 0   | FILE  | COL | VFSCI     |    |           |     |        |     |          |
| L4            |       |    | 0   | FILE  | HEA | ALSAFE    |    |           |     |        |     |          |
| L5            |       |    | 0   | FILE  | IMS | SDRUGCONF |    |           |     |        |     |          |
| L6            |       |    | 0   | FILE  | LI  | FESCI     |    |           |     |        |     |          |
| L7            |       |    | 0   | FILE  | MEI | DICONF    |    |           |     |        |     |          |
| $\mathbf{L8}$ |       |    | 0   | FILE  | PAS | SCAL      |    |           |     |        |     |          |

TOTAL FOR ALL FILES L9 0 (LEAD OR MERCURY OR CHROMIUM OR CADIMIUM) AND SCREEN AND IMMOBIL

=> (lead or mercury or chromium or cadimium) and screen and (immobilized or immobilizing or immobilized) 1 FILE AGRICOLA L10 L116 FILE BIOTECHNO L12 0 FILE CONFSCI L13 0 FILE HEALSAFE L140 FILE IMSDRUGCONF L15 3 FILE LIFESCI L16 0 FILE MEDICONF

L17 9 FILE PASCAL TOTAL FOR ALL FILES L18 19 (LEAD OR MERCURY OR CHROMIUM OR CADIMIUM) AND SCREEN AND (IMMOBI LIZED OR IMMOBILIZING OR IMMOBILIZED) => dup rem ENTER L# LIST OR (END):118 DUPLICATE IS NOT AVAILABLE IN 'IMSDRUGCONF, MEDICONF'. ANSWERS FROM THESE FILES WILL BE CONSIDERED UNIQUE PROCESSING COMPLETED FOR L18 12 DUP REM L18 (7 DUPLICATES REMOVED) L19 => d l19 ibib abs total L19 ANSWER 1 OF 12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 1 ACCESSION NUMBER: 2004:76236 LIFESCI Polychlorinated Biphenyls (PCBs) Detection in Food Samples TITLE: Using an Electrochemical Immunosensor AUTHOR: Laschi, S.; Mascini, M.; Scortichini, G.; Franek, M.; Mascini, M. Dipartimento di Chimica, Universita degli Studi di Firenze, CORPORATE SOURCE: Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze (Italy) SOURCE: Journal of Agricultural and Food Chemistry [J. Agric. Food Chem.], (20030300) vol. 51, no. 7, pp. 1816-1822. ISSN: 0021-8561. DOCUMENT TYPE: Journal FILE SEGMENT: Х LANGUAGE: English SUMMARY LANGUAGE: English AB In this work, a disposable electrochemical immunosensor, based on a competitive assay scheme, was applied to detect polychlorinated biphenyls (PCBs) in food. For this purpose, antibodies against PCBs were directly immobilized onto the carbon surface of a disposable screen -printed electrode. A competition between the PCBs present in the sample and a fixed concentration of an enzyme-labeled PCB was realized and evaluated by electrochemical detection. Alkaline phosphatase was used as the enzyme label, coupled with differential pulse voltammetry (DPV) as the electrochemical technique. The immunosensor was tested on aroclor mixture detection (1242 and 1248) and then on some typologies of food samples to evaluate the possible application for real sample analysis. Samples analyzed were from different matrixes, such as sheep milk, bovine adipose tissue, and bovine muscle. Results obtained were compared with the accredited results according to ISO 17025 methods for PCB detection (HRGC-LRMS) as a confirmatory analysis. Preliminary results show the possibility to use this device as a screening method in food sample analysis. The negligible matrix effect observed may lead to a simplified extraction procedure, and considerable time and consumable savings are the immediate benefits given by the proposed method. ANSWER 2 OF 12 AGRICOLA Compiled and distributed by the National L19 Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2004) on STN DUPLICATE 2 ACCESSION NUMBER: 2003:23784 AGRICOLA DOCUMENT NUMBER: IND23316286 Studies on chromium (VI) TITLE: . . . . . . . .

|               | adsorption-desorption using <b>immobilized</b>                |
|---------------|---------------------------------------------------------------|
|               | fungal biomass.                                               |
| AUTHOR (S) :  | Bai, R.S.; Abraham, T.E.                                      |
| AVAILABILITY: | DNAL (TD930.A32)                                              |
| SOURCE:       | Bioresource technology, Mar 2003. Vol. 87, No. 1. p.<br>17-26 |

Publisher: Oxford, U.K. : Elsevier Science Limited. CODEN: BIRTEB; ISSN: 0960-8524 NOTE : Includes references PUB. COUNTRY: England; United Kingdom DOCUMENT TYPE: Article FILE SEGMENT: Non-U.S. Imprint other than FAO LANGUAGE: English AB The aim of this study was to investigate the Cr(VI) biosorption potential of immobilized Rhizopus nigricans and to screen a variety of non-toxic desorbing agents, in order to find out possible application in multiple sorption-desorption cycles. The biomass was immobilized by various mechanisms and evaluated for removal of Cr(VI) from aqueous solution, mechanical stability to desorbents, and reuse in successive cycles. The finely powdered biomass, entrapped in five different polymeric matrices viz. calcium alginate, polyvinyl alcohol (PVA), polyacrylamide, polyisoprene, and polysulfone was compared for biosorption efficiency and stability to desorbents. Physical immobilization to polyurethane foam and coir fiber was less efficient than polymer entrapment methods. Of the different combinations (, w/v) of biomass dose compared for each matrix, 8% (calcium alginate), 6% (polyacrylamide and PVA), 12% (polyisoprene), and 10% (polysulfone) were found to be the optimum. The Cr sorption capacity (mg Cr/g sorbent) of all immobilized biomass was lesser than the native, powdered biomass. The Cr sorption capacity decreased in the order of free biomass (119.2) > polysulfone entrapped (101.5) > polyisoprene immobilized (98.76) > PVA immobilized (96.69) > calcium alginate entrapped (84.29) > polyacrylamide (45.56), at 500 mg/l concentration of Cr(VI). The degree of mechanical stability and chemical resistance of the immobilized systems were in the order of polysulfone > polyisoprene > PVA > polyacrylamide > calcium alginate. The bound Cr(VI) could be eluted successfully using 0.01 N NaOH, NaHCO3, and Na2CO3. The adsorption data for the native and the immobilized biomass was evaluated by the Freundlich isotherm model. The successive sorption-desorption studies employing polysulfone entrapped biomass indicated that the biomass beads could be regenerated and reused in more than 25 cycles and the regeneration efficiency was 75-78%. T.1 9 ANSWER 3 OF 12 BIOTECHNO COPYRIGHT 2004 Fleevier Science B V on STN

| DUPLICATE                             | OIECHNO COPIRIGHI 2004 EISEVIER SCIEnce B.V. on STN |  |  |  |  |
|---------------------------------------|-----------------------------------------------------|--|--|--|--|
|                                       | ,                                                   |  |  |  |  |
| ACCESSION NUMBER:                     | 2002:35232483 BIOTECHNO                             |  |  |  |  |
| TITLE:                                | Microbial biosensor array with transport mutants of |  |  |  |  |
|                                       | Escherichia coli K12 for the simultaneous           |  |  |  |  |
|                                       | determination of mono-and disaccharides             |  |  |  |  |
| AUTHOR :                              | Held M.; Schuhmann W.; Jahreis K.; Schmidt HL.      |  |  |  |  |
| CORPORATE SOURCE:                     | HL. Schmidt, Lehrstuhl fur Biologische Chemie, TU   |  |  |  |  |
| , , , , , , , , , , , , , , , , , , , | Munchen, Vottingerstrasse 40, D-85350 Freising,     |  |  |  |  |
|                                       |                                                     |  |  |  |  |
| 00110.00                              | Germany.                                            |  |  |  |  |
| SOURCE :                              | Biosensors and Bioelectronics, (2002), 17/11-12     |  |  |  |  |
|                                       | (1089–1094), 26 reference(s)                        |  |  |  |  |
|                                       | CODEN: BBIOE4 ISSN: 0956-5663                       |  |  |  |  |
| PUBLISHER ITEM IDENT .:               | S0956566302001033                                   |  |  |  |  |
| DOCUMENT TYPE:                        | Journal; Article                                    |  |  |  |  |
| COUNTRY:                              | United Kingdom                                      |  |  |  |  |
| LANGUAGE :                            | English                                             |  |  |  |  |
| SUMMARY LANGUAGE:                     | English                                             |  |  |  |  |
| AN 2002:35232483 BIOTECHNO            |                                                     |  |  |  |  |
|                                       |                                                     |  |  |  |  |
| AB An automated flow-                 | injection system with an integrated biosensor array |  |  |  |  |

An automated flow-injection system with an integrated biosensor array using bacterial cells for the selective and simultaneous determination various mono- and disaccharides is described. The selectivity of the individually addressable sensors of the array was achieved by the combination of the metabolic response, measured as the O.sub.2 consumption, of bacterial mutants of Escherichia coli K12 lacking different transport systems for individual carbohydrates.  $\kappa$ -Carrageenan was used as immobilization matrix for entrapment of the bacterial cells in front of 6 individually addressable working electrodes of a **screen**-printed sensor array. The local consumption of molecular oxygen caused by the metabolic activity of the **immobilized** cells was amperometrically determined at the underlying **screen**-printed gold electrodes at a working potential of -600 mV vs. Ag/AgCl. Addition of mono- or disaccharides for which functional transport systems exist in the used transport mutant strains of E. coli K12 **leads** to an enhanced metabolic activity of the **immobilized** bacterial cells and to a concomitant depletion of oxygen at the electrode. Parallel determination of fructose, glucose, and sucrose was performed demonstrating the high selectivity of the proposed analytical system. .COPYRGT. 2002 Published by Elsevier Science B.V.

|                    | BIOTECHNO COPYRIGHT 2004 Elsevier Science B.V. on STN    |
|--------------------|----------------------------------------------------------|
| ACCESSION NUMBER:  | 2002:34174576 BIOTECHNO                                  |
| TITLE:             | Diagnostic biochip array for fast and sensitive          |
|                    | detection of K-ras mutations in stool                    |
| AUTHOR :           | Prix L.; Uciechowski P.; Bockmann B.; Giesing M.;        |
|                    | Schuetz A.J.                                             |
| CORPORATE SOURCE:  | A.J. Schuetz, Inst. fur Molekulare NanoTechnologie,      |
|                    | Berghauser Strasse 295, 45659 Recklinghausen, Germany.   |
|                    | E-mail: a.schuetz@imnt.de                                |
| SOURCE :           | Clinical Chemistry, (2002), 48/3 (428-435), 29           |
|                    | reference(s)                                             |
|                    | CODEN: CLCHAU ISSN: 0009-9147                            |
| DOCUMENT TYPE:     | Journal; Article                                         |
| COUNTRY:           | United States                                            |
| LANGUAGE :         | English                                                  |
| SUMMARY LANGUAGE:  | English                                                  |
| AN 2002:34174576   | BIOTECHNO                                                |
| AB Background: Tum | or cells that shed into stool are attractive targets for |

Background: Tumor cells that shed into stool are attractive targets for molecular screening and early detection of colon or pancreatic malignancies. We developed a diagnostic test to screen for 10 of the most common mutations of codons 12 and 13 of the K-ras gene by hybridization to a new biochip array. Methods: DNA was isolated from 26 stool samples by column-based extraction from 9 cell lines. Peptide nucleic acid (PNA)-mediated PCR clamping was used for mutant-specific amplification. We used a biochip, consisting of a small plastic support with covalently immobilized 13mer oligonucleotides. The read out of the biochip was done by confocal time-resolved laser scanning. Hybridization, scanning, and data evaluation could be performed in <2 h. Results: Approximately 80 ng of DNA was obtained from 200-mg stool samples. No inhibition of the PCR by remaining impurities from stool was observed. Mutation detection was possible in 1000-fold excess of wild-type sequence. Discrimination ratios between the mutations were >19 as demonstrated by hybridization with tumor cell line DNA. Stool samples (n = 26) were analyzed in parallel with PNA-PCR, restriction assay for K-ras codon 12 mutations, sequencing, and hybridization to the biochip. Nine mutations were found by hybridization, all confirmed by sequencing. PNA-PCR alone leads to an overestimation of mutations because suppression of the wild type is not effective enough with high concentrations of wild-type DNA. The restriction assay found only four mutations. Conclusions: The K-ras biochip is well suited for fast mutation detection from stool in colorectal cancer screening. .COPYRGT. 2002 American Association for Clinical Chemistry.

| L19 ANSWER 5 OF 12<br>on STN | PASCAL COPYRIGHT 2004 INIST-CNRS. ALL RIGHTS RESERVED.                                   |
|------------------------------|------------------------------------------------------------------------------------------|
| ACCESSION NUMBER:            | 2002-0292637 PASCAL                                                                      |
| COPYRIGHT NOTICE:            | Copyright .COPYRGT. 2002 INIST-CNRS. All rights reserved.                                |
| TITLE (IN ENGLISH):          | Diagnostic biochip array for fast and sensitive<br>detection of K-ras mutations in stool |

| AUTHOR :                                                                 | PRIX Lothar; UCIECHOWSKI Peter; BOECKMANN Beatrix;                                                      |  |  |  |  |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                          | GIESING Michael; SCHUETZ Andreas J.                                                                     |  |  |  |  |
| CORPORATE SOURCE:                                                        | Institut fuer Molekulare NanoTechnologie, Berghaeuser                                                   |  |  |  |  |
|                                                                          | Strasse 295, 45659 Recklinghausen, Germany, Federal                                                     |  |  |  |  |
|                                                                          | Republic of                                                                                             |  |  |  |  |
| SOURCE:                                                                  | Clinical chemistry : (Baltimore, Md.), (2002), 3(48),                                                   |  |  |  |  |
|                                                                          | 428-435, 29 refs.                                                                                       |  |  |  |  |
| DOCUMENT TYPE                                                            | ISSN: 0009-9147 CODEN: CLCHAU<br>Journal                                                                |  |  |  |  |
| DOCUMENT TYPE:<br>BIBLIOGRAPHIC LEVEL:                                   | Analytic                                                                                                |  |  |  |  |
| COUNTRY:                                                                 | United States                                                                                           |  |  |  |  |
| LANGUAGE :                                                               | English                                                                                                 |  |  |  |  |
| AVAILABILITY:                                                            | INIST-7603, 354000100284300070                                                                          |  |  |  |  |
|                                                                          | SCAL                                                                                                    |  |  |  |  |
| CP Copyright .COPYRG                                                     | C. 2002 INIST-CNRS. All rights reserved.                                                                |  |  |  |  |
| AB Background: Tumor                                                     | cells that shed into stool are attractive targets for                                                   |  |  |  |  |
|                                                                          | ng and early detection of colon or pancreatic                                                           |  |  |  |  |
|                                                                          | leveloped a diagnostic test to <b>screen</b> for 10                                                     |  |  |  |  |
|                                                                          | n mutations of codons 12 and 13 of the K-ras gene by                                                    |  |  |  |  |
|                                                                          | a new biochip array. Methods: DNA was isolated from 26                                                  |  |  |  |  |
|                                                                          | column-based extraction from 9 cell lines. Peptide                                                      |  |  |  |  |
|                                                                          | -mediated PCR clamping was used for mutant-specific                                                     |  |  |  |  |
|                                                                          | used a biochip, consisting of a small plastic support <b>mobilized</b> 13mer oligonucleotides. The read |  |  |  |  |
|                                                                          | was done by confocal time-resolved laser scanning.                                                      |  |  |  |  |
|                                                                          | anning, and data evaluation could be performed in <2 h.                                                 |  |  |  |  |
|                                                                          | ately 80 ng of DNA was obtained from 200-mg stool                                                       |  |  |  |  |
| samples. No inhibition of the PCR by remaining impurities from stool was |                                                                                                         |  |  |  |  |
|                                                                          | detection was possible in 1000-fold excess of                                                           |  |  |  |  |
|                                                                          | e. Discrimination ratios between the mutations were >19                                                 |  |  |  |  |
|                                                                          | v hybridization with tumor cell line DNA. Stool samples                                                 |  |  |  |  |
|                                                                          | lyzed in parallel with PNA-PCR, restriction assay for                                                   |  |  |  |  |
| K-ras codon 12 mut                                                       | cations, sequencing, and hybridization to the biochip.                                                  |  |  |  |  |
|                                                                          | e found by hybridization, all confirmed by sequencing.                                                  |  |  |  |  |
|                                                                          | ls to an overestimation of mutations because                                                            |  |  |  |  |
|                                                                          | e wild type is not effective enough with high                                                           |  |  |  |  |
|                                                                          | wild-type DNA. The restriction assay found only four                                                    |  |  |  |  |
|                                                                          | sions: The K-ras biochip is well suited for fast                                                        |  |  |  |  |
| mutation detection                                                       | n from stool in colorectal cancer screening.                                                            |  |  |  |  |
| L19 ANSWER 6 OF 12 B                                                     | OTECHNO COPYRIGHT 2004 Elsevier Science B.V. on STN                                                     |  |  |  |  |
| DUPLICATE                                                                | IOIECHNO COPIRIGHI 2004 EISEVIEI SCIENCE B.V. ON SIN                                                    |  |  |  |  |
| ACCESSION NUMBER:                                                        | 2002:34142295 BIOTECHNO                                                                                 |  |  |  |  |
| TITLE:                                                                   | <b>Immobilized</b> receptor- and transporter-based                                                      |  |  |  |  |
| 11100.                                                                   | liquid chromatographic phases for on-line                                                               |  |  |  |  |
|                                                                          | pharmacological and biochemical studies: A mini-review                                                  |  |  |  |  |
| AUTHOR :                                                                 | Moaddel R.; Lu L.; Baynham M.; Wainer I.W.                                                              |  |  |  |  |
| CORPORATE SOURCE:                                                        | I.W. Wainer, National Institute on Aging, National                                                      |  |  |  |  |
|                                                                          | Institute of Healths, Gerontology Research Center,                                                      |  |  |  |  |
|                                                                          | 5600 Nathan Shock Drive, Baltimore, MD 21224-6825,                                                      |  |  |  |  |
|                                                                          | United States.                                                                                          |  |  |  |  |
| · · · · · · · ·                                                          | E-mail: wainerir@grc.nia.nih.gov                                                                        |  |  |  |  |
| SOURCE:                                                                  | Journal of Chromatography B: Analytical Technologies                                                    |  |  |  |  |
|                                                                          | in the Biomedical and Life Sciences, (2002), 768/1                                                      |  |  |  |  |

.

.

SUMMARY LANGUAGE:EnglishAN2002:34142295BIOTECHNOABThis review addresses the synthesis and characterization of two different<br/>types of receptor-based liquid chromatographic supports, one based upon a

~

CODEN: JCBAAI ISSN: 1570-0232

(41-53), 43 reference(s)

Journal; General Review

S0378434701004844

Netherlands

English

PUBLISHER ITEM IDENT.:

DOCUMENT TYPE:

COUNTRY:

LANGUAGE:

trans-membrane ligand gated ion channel receptor (the nicotinic acetylcholine receptor) and the other a soluble nuclear receptor (the estrogen receptor). In addition, studies with the P-glycoprotein transporter are also reported. The nicotinic receptor was immobilized via hydrophobic insertion into the interstitial spaces of an **immobilized** artificial membrane (IAM) stationary phase, the estrogen receptor was tethered to a hydrophilic stationary phase and the membranes containing the Pgp transporter were coated on the surface of the IAM stationary phase. The stationary phases were characterized using known ligands and substrates for the respective nonimmobilized proteins. The results from zonal and frontal chromatographic experiments demonstrated that the stationary phases could be used to determine binding affinities (expressed as dissociation constants, K.sub.d's) and to resolve mixtures of ligands according to their relative affinities. In addition, competitive ligand binding studies on the P-glycoprotein-based stationary phase have established that this phase can be used to identify and characterize competitive displacement and allosteric interactions. These studies demonstrate that immobilized-receptor phases can be used for on-line pharmacological studies and as rapid screens for the isolation and identification of **lead** drug candidates from complex biological or chemical mixtures. .COPYRGT. 2002 Elsevier Science B.V. All rights reserved.

| L19 ANSWER 7 OF 12<br>ACCESSION NUMBER: | LIFESCI COPYRIGHT 2004 CSA on STN<br>2002:53611 LIFESCI     |
|-----------------------------------------|-------------------------------------------------------------|
|                                         |                                                             |
| TITLE:                                  | Assessing the Absorption of New Pharmaceuticals             |
| AUTHOR:                                 | Hidalgo, I.J.                                               |
| CORPORATE SOURCE:                       | Absorption Systems, LP, 440 Creamery Way, Suite 300, Exton, |
|                                         | PA 19341, USA; E-mail: hidalgo@absorption.com               |
| SOURCE :                                | Current Topics in Medicinal Chemistry [Curr. Top. Med.      |
|                                         | Chem.], (20011100) vol. 1, no. 5, pp. 385-401. Compound     |
|                                         | Optimization in Early and Late-Phase Drug Discovery:        |
|                                         | Physiochemical, Pharmacokinetic, Drug Metabolism and        |
|                                         | Toxicologic Assessments                                     |
|                                         | 3                                                           |
|                                         | ISSN: 1568-0266.                                            |
| DOCUMENT TYPE:                          | Journal                                                     |
| TREATMENT CODE:                         | General Review                                              |
| FILE SEGMENT:                           | W3                                                          |
| LANGUAGE :                              | English                                                     |
| SUMMARY LANGUAGE:                       | English                                                     |
| AB The advent of r                      | nore efficient methods to sumthosize and server             |

The advent of more efficient methods to synthesize and screen AB new chemical compounds is increasing the number of chemical leads identified in the drug discovery phase. Compounds with good biological activity may fail to become drugs due to insufficient oral absorption. Selection of drug development candidates with adequate absorption characteristics should increase the probability of success in the development phase. To assess the absorption potential of new chemical entities numerous in vitro and in vivo model systems have been used. Many laboratories rely on cell culture models of intestinal permeability such as, Caco-2, HT-29 and MDCK. To attempt to increase the throughput of permeability measurements, several physicochemical methods such as, immobilized artificial membrane (IAM) columns and parallel artificial membrane permeation assay (PAMPA) have been used. More recently, much attention has been given to the development of computational methods to predict drug absorption. However, it is clear that no single method will sufficient for studying drug absorption, but most likely a combination of systems will be needed. Higher throughput, less reliable methods could be used to discover 'loser' compounds, whereas lower throughput, more accurate methods could be used to optimize the absorption properties of lead compounds. Finally, accurate methods are needed to understand absorption mechanisms (efflux -limited absorption, carrier-mediated, intestinal metabolism) that may limit intestinal drug absorption. This information could be extremely valuable

to medicinal chemists in the selection of favorable chemo-types. This review describes different techniques used for evaluating drug absorption and indicates their advantages and disadvantages.

| L19   |                 | BIOTECHNO COPYRIGHT 2004 Elsevier Science B.V. on STN     |
|-------|-----------------|-----------------------------------------------------------|
|       | DUPLICATE       |                                                           |
| ACCES | SION NUMBER:    | 2000:30220191 BIOTECHNO                                   |
| TITLE | :               | A disposable amperometric sensor <b>screen</b>            |
|       |                 | printed on a nitrocellulose strip: A glucose biosensor    |
|       |                 | employing <b>lead</b> oxide as an                         |
|       |                 |                                                           |
| _     |                 | interference-removing agent                               |
| AUTHO | R :             | Cui G.; Sang Jin Kim; Sung Hyuk Choi; Nam H.; Geun Sig    |
|       |                 | Cha; Paeng KJ.                                            |
| CORPO | RATE SOURCE:    | G.S. Cha, Chemical Sensor Research Group, Department      |
|       |                 | of Chemistry, Kwangwoon University, 447-1 Wolqye-Dong,    |
|       |                 | Nowon-Ku, Seoul 139-701, South Korea.                     |
| SOURC | P.              |                                                           |
| SUURC | <b>L</b> :      | Analytical Chemistry, (15 APR 2000), 72/8 (1925-1929)     |
|       |                 | CODEN: ANCHAM ISSN: 0003-2700                             |
| DOCUM | ENT TYPE:       | Journal; Article                                          |
| COUNT | RY:             | United States                                             |
| LANGU | AGE :           | English                                                   |
| SUMMA | RY LANGUAGE:    | English                                                   |
| AN    | 2000:30220191   | BIOTECHNO                                                 |
| AB    | A new type of d | isposable amperometric sensor is devised by <b>screen</b> |
|       |                 |                                                           |

printing thick-film electrodes directly on a porous nitrocellulose (NC) strip. The chromatographic NC strip is then utilized to introduce various sample pretreatment layers. As a preliminary application, a glucose biosensor based on hydrogen peroxide detection is constructed by immobilizing glucose oxidase (GOx) on the NC electrode strip and by formulating a strong oxidation layer (i.e., PbO.sub.2) at the sample loading area, placed below the GOx reaction band. The screen -printed PbO.sub.2 paste serves as a sample pretreatment layer that removes interference by its strong oxidizing ability. Samples applied are carried chromatographically, via the PbO.sub.2 paste, to the GOX layer, and glucose is catalyzed to liberate hydrogen peroxide, which is then detected at the electrode surface. The proposed NC/PbO.sub.2 strip sensor is shown to be virtually insusceptible to interfering species such as acetaminophen and ascorbic and uric acids and to exhibit good performance, in terms of the sensor-to-sensor reproducibility (standard deviation,  $\pm 0.026 - \pm 0.086~\mu A)\,,$  the sensitivity (slope, -0.183  $\mu$ A/mM), and the linearity (correlation coefficient, 0.994 in the range of 0-10 mM).

| L19 ANSWER 9 OF 12 <sup>.</sup><br>ACCESSION NUMBER:<br>TITLE: | BIOTECHNO COPYRIGHT 2004 Elsevier Science B.V. on STN<br>2000:30069062 BIOTECHNO<br>Biosensor analysis of drug-target interactions: Direct<br>and competitive binding assays for investigation of |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AUTHOR :                                                       | interactions between thrombin and thrombin inhibitors<br>Karlsson R.; Kullman-Magnusson M.; Hamalainen M.D.;<br>Remaeus A.; Andersson K.; Borg P.; Gyzander E.; Deinum<br>J.                      |
| CORPORATE SOURCE:                                              | R. Karlsson, Biacore AB, Rapsgatan 7, SE-754 50<br>Uppsala, Sweden.<br>E-mail: robert.karlsson@eu.biacore.com                                                                                     |
| SOURCE :                                                       | Analytical Biochemistry, (01 FEB 2000), 278/1 (1-13),<br>15 reference(s)<br>CODEN: ANBCA2 ISSN: 0003-2697                                                                                         |
| DOCUMENT TYPE:                                                 | Journal; Article                                                                                                                                                                                  |
| COUNTRY:                                                       | United States                                                                                                                                                                                     |
| LANGUAGE :                                                     | English                                                                                                                                                                                           |
| SUMMARY LANGUAGE:                                              | English                                                                                                                                                                                           |
| AN 2000:30069062 H                                             |                                                                                                                                                                                                   |
| AB The sensitivity of characterization                         | of BIACORE technology is sufficient for detection and of binding events involving low-molecular-weight                                                                                            |

compounds and their immobilized protein targets. The technology requires no labeling and provides information on the stability of the compound/target complex with a single injection of the compound. This is useful for qualifying hits obtained in a primary screen and in lead optimization. Although immobilized targets can be reused, the surface may slowly deteriorate, solvent effects can distort binding levels during injection of compounds, and some compounds may exhibit broad protein selectivity rather than target specificity. A reliable direct binding assay for compounds binding to immobilized thrombin using a combination of two reference surfaces, a dextran surface for subtraction and calibration of solvent effects and a protein surface for identification of compounds that tend to bind proteins, has been developed. Eleven compounds with known binding specificity to thrombin and 159 additional compounds were investigated. All compounds with known binding specificity were identified at 1 and 10  $\mu M$  concentration. One additional compound was scored as positive. The direct binding assay compared favorably with two competitive assay formats, a surface competitive assay and a inhibitor in solution assay, that were examined in parallel.

| L19 ANSWER 10 OF 12 P<br>on STN | ASCAL COPYRIGHT 2004 INIST-CNRS. ALL RIGHTS RESERVED.  |
|---------------------------------|--------------------------------------------------------|
| ACCESSION NUMBER:               | 1998-0045605 PASCAL                                    |
| COPYRIGHT NOTICE:               | Copyright .COPYRGT. 1998 INIST-CNRS. All rights        |
|                                 | reserved.                                              |
| TITLE (IN ENGLISH):             | Biochemical detection for direct bead surface analysis |
| AUTHOR :                        | LUTZ E. S. M.; IRTH H.; TJADEN U. R.; VAN DER GREEF J. |
| CORPORATE SOURCE:               | Division of Analytical Chemistry, Leiden/Amsterdam     |
|                                 | Center for Drug Research, Leiden University, P.O. Box  |
|                                 | 9502, 2300 RA Leiden, Netherlands                      |
| SOURCE:                         | Analytical chemistry : (Washington, DC), (1997),       |
|                                 | 69(23), 4878-4884, 23 refs.                            |
|                                 | ISSN: 0003-2700 CODEN: ANCHAM                          |
| DOCUMENT TYPE:                  | Journal                                                |
| BIBLIOGRAPHIC LEVEL:            | Analytic                                               |
| COUNTRY:                        | United States                                          |
| LANGUAGE :                      | English                                                |
| AVAILABILITY:                   | INIST-120B, 354000079516850220                         |
| AN 1998-0045605 PAS             |                                                        |
| CP Copyright .COPYRGT           | . 1998 INIST-CNRS. All rights reserved.                |
| AB A continuous-flow            | biochemical detection system is presented which        |
| recognizes biologi              | cally active compounds immobilized to solid            |
| phases. This appro-             | ach can be used to <b>screen</b> , for example,        |
| solid-phase combin              | atorial libraries for <b>lead</b> compounds.           |
| Biochemical detect              | ion is performed by mixing a plug of a solid-phase     |
| suspension with la              | beled affinity protein. During a short reaction time.  |
| the labeled affini              | ty protein will only bind to ligands, i.e., compounds  |
| with biological ac              | tivity. Hereafter, the free and bound labels are       |
| constated by means              | of a hollow fibor module. Our starting fills           |

with biological activity. Hereafter, the free and bound labels are separated by means of a hollow fiber module. Quantitation of the free label is performed with a conventional flow-through fluorescence detector. Total assay time amounts to less than 3 min. Biochemical detection for direct bead surface analysis was developed for two model systems. The first model system used fluorescence-labeled avidin as affinity protein and its ligands biotin and iminobiotin immobilized to agarose as analytes. The second model system used fluorescence-labeled antisheep (Fab).sub.2 fragments as affinity protein and different IgGs immobilized to agarose as analytes. The feasibility of this approach for recognition of solid-phase immobilized ligands was documented by screening 50 samples with a 100% hit rate.

L19 ANSWER 11 OF 12 PASCAL COPYRIGHT 2004 INIST-CNRS. ALL RIGHTS RESERVED. on STN ACCESSION NUMBER: 1996-0121747 PASCAL

| COPYRIGHT NOTICE:                                                                                                                                                                      | Copyright .COPYRGT. 1996 INIST-CNRS. All rights                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| TITLE (IN ENGLISH)                                                                                                                                                                     | reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| TITLE (IN ENGLISH)                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|                                                                                                                                                                                        | electrodes for the electrocatalytic oxidation of NADH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| AUTHOR :                                                                                                                                                                               | and their applications in glucose biosensors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|                                                                                                                                                                                        | SILBER A.; HAMPP N.; SCHUHMANN W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ` |
| CORPORATE SOURCE:                                                                                                                                                                      | Ludwig-Maximilians-Univ. Muenchen, Inst. physikalische                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| COUDCE                                                                                                                                                                                 | Chemie, 80333 Muenchen, Germany, Federal Republic of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| SOURCE:                                                                                                                                                                                | Biosensors & bioelectronics, (1996), 11(3), 215-223,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|                                                                                                                                                                                        | 18 refs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| DOCUMENTE ENTER                                                                                                                                                                        | ISSN: 0956-5663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| DOCUMENT TYPE:                                                                                                                                                                         | Journal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| BIBLIOGRAPHIC LEVE                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| COUNTRY:                                                                                                                                                                               | United Kingdom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| LANGUAGE:                                                                                                                                                                              | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| AVAILABILITY:                                                                                                                                                                          | INIST-20668, 354000052553600020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| AN 1996-0121747<br>CP Copyright C                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| CP Copyright .C                                                                                                                                                                        | OPYRGT. 1996 INIST-CNRS. All rights reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| AB Electropolym                                                                                                                                                                        | erization of the phenothiazine derivative methylene blue (MB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| on screen-pr                                                                                                                                                                           | inted, thick-film gold electrodes leads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| to electroca                                                                                                                                                                           | talytically active and conducting layers of poly(methylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| DIUE) (PMB)                                                                                                                                                                            | in intimate and stable contact with the electrode surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| ine catalyti                                                                                                                                                                           | c properties of the PMB films allow anodic oxidation of NADH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| at potential                                                                                                                                                                           | s as low as +200 mV vs. the saturated calomel electrode (SCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| reducing int                                                                                                                                                                           | erferences from co-oxidizable species as well as minimizing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| electrode for                                                                                                                                                                          | uling by enabling a simultaneous two-electron transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| mechanism. De                                                                                                                                                                          | ehydrogenase-based biosensors employing PMB-modified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| thick-film e                                                                                                                                                                           | lectrodes are obtained either by entrapment of the enzyme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| into the PMB                                                                                                                                                                           | layer itself or by laminating an enzyme membrane made of an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| aqueous poly                                                                                                                                                                           | (vinylacetate) dispersion over the PMB-modified electrode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| Both methods                                                                                                                                                                           | are used to fabricate glucose biosensors which can be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| operated at .                                                                                                                                                                          | low overpotentials, i.e. +200 mV vs. SCE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| L19 ANSWER 12 OF 2                                                                                                                                                                     | 12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| ACCESSION NUMBER:                                                                                                                                                                      | 12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br>97:58960 LIFESCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| TITLE:                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|                                                                                                                                                                                        | Development of <b>screen</b> -printed enzyme electrodes<br>for the estimation of fish quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| AUTHOR :                                                                                                                                                                               | Chempiting C.C. Diliterality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| CORPORATE SOURCE:                                                                                                                                                                      | Chemnitius, G.C.; Bilitewski, U.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| CONFORMIE BOURCE:                                                                                                                                                                      | Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| SOURCE :                                                                                                                                                                               | D-48149 Muenster, Germany                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| SOURCE.                                                                                                                                                                                | SENSORS ACTUATORS B: CHEM., (1996) vol. B32, no. 2, pp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| DOCUMENT TYPE:                                                                                                                                                                         | ISSN: 0925-4005.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| FILE SEGMENT:                                                                                                                                                                          | Journal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|                                                                                                                                                                                        | Q4<br>En al dal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| LANGUAGE:                                                                                                                                                                              | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| SUMMARY LANGUAGE:                                                                                                                                                                      | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| AB Enzyme electro                                                                                                                                                                      | odes for the determination of biogenic amines have been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| developed usir                                                                                                                                                                         | ng monoamine oxidase (MAO) from Aspergillus niger and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| putrescine oxi                                                                                                                                                                         | idase (PO) from Micrococcus rubens. Determination is based on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| the electroche                                                                                                                                                                         | emical oxidation of enzymatically produced H sub(2)O sub(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| at <b>screen</b> -prin                                                                                                                                                                 | produced in sub(2)0 sub(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|                                                                                                                                                                                        | nted platinum electrodes. The enzymes are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| 1mmobilized of                                                                                                                                                                         | ited platinum electrodes. The enzymes are<br>i silanized electrodes by cross-linking with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| glutaraldehyde                                                                                                                                                                         | nted platinum electrodes. The enzymes are<br>n silanized electrodes by cross-linking with<br>e. Compositions of the immobilization mixtures are optimized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| glutaraldehyde<br>with respect t                                                                                                                                                       | nted platinum electrodes. The enzymes are<br>n silanized electrodes by cross-linking with<br>e. Compositions of the immobilization mixtures are optimized<br>to stability, sensitivity and selectivity of the sensors. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| glutaraldehyde<br>with respect t<br>electrodes usi                                                                                                                                     | nted platinum electrodes. The enzymes are<br>n silanized electrodes by cross-linking with<br>e. Compositions of the immobilization mixtures are optimized<br>to stability, sensitivity and selectivity of the sensors. The<br>ing MAO as the biochemical component respond to several                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| glutaraldehyde<br>with respect t<br>electrodes usi<br>amines includi                                                                                                                   | nted platinum electrodes. The enzymes are<br>n silanized electrodes by cross-linking with<br>e. Compositions of the immobilization mixtures are optimized<br>to stability, sensitivity and selectivity of the sensors. The<br>ing MAO as the biochemical component respond to several<br>ing histamine, an important amine in the determination of                                                                                                                                                                                                                                                                                                                                                                           |   |
| glutaraldehyde<br>with respect t<br>electrodes usi<br>amines includi<br>fish freshness                                                                                                 | nted platinum electrodes. The enzymes are<br>n silanized electrodes by cross-linking with<br>e. Compositions of the immobilization mixtures are optimized<br>to stability, sensitivity and selectivity of the sensors. The<br>ing MAO as the biochemical component respond to several<br>ing histamine, an important amine in the determination of<br>s. The PO electrodes show a significant response not only to                                                                                                                                                                                                                                                                                                           |   |
| glutaraldehyde<br>with respect t<br>electrodes usi<br>amines includi<br>fish freshness<br>putrescine and                                                                               | nted platinum electrodes. The enzymes are<br>n silanized electrodes by cross-linking with<br>e. Compositions of the immobilization mixtures are optimized<br>to stability, sensitivity and selectivity of the sensors. The<br>ing MAO as the biochemical component respond to several<br>ing histamine, an important amine in the determination of<br>s. The PO electrodes show a significant response not only to<br>d its homologue cadaverine but also to tyramine an                                                                                                                                                                                                                                                     |   |
| glutaraldehyde<br>with respect t<br>electrodes usi<br>amines includi<br>fish freshness<br>putrescine and<br>electrochemica                                                             | nted platinum electrodes. The enzymes are<br>n silanized electrodes by cross-linking with<br>e. Compositions of the immobilization mixtures are optimized<br>to stability, sensitivity and selectivity of the sensors. The<br>ing MAO as the biochemical component respond to several<br>ing histamine, an important amine in the determination of<br>s. The PO electrodes show a significant response not only to<br>d its homologue cadaverine but also to tyramine, an<br>ally active amine. The optimal buffer for both types of amine                                                                                                                                                                                   |   |
| glutaraldehyde<br>with respect t<br>electrodes usi<br>amines includi<br>fish freshness<br>putrescine and<br>electrochemica<br>oxidase electr                                           | nted platinum electrodes. The enzymes are<br>a silanized electrodes by cross-linking with<br>b. Compositions of the immobilization mixtures are optimized<br>co stability, sensitivity and selectivity of the sensors. The<br>ing MAO as the biochemical component respond to several<br>ing histamine, an important amine in the determination of<br>s. The PO electrodes show a significant response not only to<br>d its homologue cadaverine but also to tyramine, an<br>ally active amine. The optimal buffer for both types of amine<br>codes is Clark and Lubs (C + L) buffer pH 8 5. Simultaneous                                                                                                                    |   |
| glutaraldehyde<br>with respect t<br>electrodes usi<br>amines includi<br>fish freshness<br>putrescine and<br>electrochemica<br>oxidase electr<br>determination                          | nted platinum electrodes. The enzymes are<br>a silanized electrodes by cross-linking with<br>b. Compositions of the immobilization mixtures are optimized<br>to stability, sensitivity and selectivity of the sensors. The<br>ing MAO as the biochemical component respond to several<br>ing histamine, an important amine in the determination of<br>s. The PO electrodes show a significant response not only to<br>d its homologue cadaverine but also to tyramine, an<br>ally active amine. The optimal buffer for both types of amine<br>rodes is Clark and Lubs (C + L) buffer pH 8.5. Simultaneous<br>of the substrates of both enzymes can be accomplished by                                                        |   |
| glutaraldehyde<br>with respect t<br>electrodes usi<br>amines includi<br>fish freshness<br>putrescine and<br>electrochemica<br>oxidase electr<br>determination<br><b>immobilizing</b> P | nted platinum electrodes. The enzymes are<br>a silanized electrodes by cross-linking with<br>b. Compositions of the immobilization mixtures are optimized<br>to stability, sensitivity and selectivity of the sensors. The<br>ing MAO as the biochemical component respond to several<br>ing histamine, an important amine in the determination of<br>s. The PO electrodes show a significant response not only to<br>d its homologue cadaverine but also to tyramine, an<br>ally active amine. The optimal buffer for both types of amine<br>rodes is Clark and Lubs (C + L) buffer pH 8.5. Simultaneous<br>of the substrates of both enzymes can be accomplished by<br>PO and MAO onto different working electrodes of the |   |
| glutaraldehyde<br>with respect t<br>electrodes usi<br>amines includi<br>fish freshness<br>putrescine and<br>electrochemica<br>oxidase electr<br>determination<br><b>immobilizing</b> P | nted platinum electrodes. The enzymes are<br>a silanized electrodes by cross-linking with<br>b. Compositions of the immobilization mixtures are optimized<br>to stability, sensitivity and selectivity of the sensors. The<br>ing MAO as the biochemical component respond to several<br>ing histamine, an important amine in the determination of<br>s. The PO electrodes show a significant response not only to<br>d its homologue cadaverine but also to tyramine, an<br>ally active amine. The optimal buffer for both types of amine<br>rodes is Clark and Lubs (C + L) buffer pH 8.5. Simultaneous<br>of the substrates of both enzymes can be accomplished by<br>PO and MAO onto different working electrodes of the |   |
| glutaraldehyde<br>with respect t<br>electrodes usi<br>amines includi<br>fish freshness<br>putrescine and<br>electrochemica<br>oxidase electr<br>determination<br><b>immobilizing</b> P | nted platinum electrodes. The enzymes are<br>a silanized electrodes by cross-linking with<br>b. Compositions of the immobilization mixtures are optimized<br>to stability, sensitivity and selectivity of the sensors. The<br>ing MAO as the biochemical component respond to several<br>ing histamine, an important amine in the determination of<br>s. The PO electrodes show a significant response not only to<br>d its homologue cadaverine but also to tyramine, an<br>ally active amine. The optimal buffer for both types of amine<br>rodes is Clark and Lubs (C + L) buffer pH 8.5. Simultaneous<br>of the substrates of both enzymes can be accomplished by                                                        |   |

<u>د</u> ،

mackerel and codfish in storage. As expected, sensor signals increase with storage time of the fish, indicating the production of biogenic amines. During storage of mackerel, mainly histamine is produced, which **leads** to an increase in the signals obtained with the MAO electrodes. On the other hand, the putrefaction process of codfish during storage is detected mainly by the PO electrodes. All results are confirmed by comparison with HPLC data. Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID:ssspta1641cxc

PASSWORD: TERMINAL (ENTER 1, 2, 3, OR ?):2

| * * *                        | * *                  | * *      | * *                     | * Welcome to STN International * * * * * * * * * *                                                                                                                  |
|------------------------------|----------------------|----------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NEWS                         | 1                    |          |                         | Web Page URLs for STN Seminar Schedule - N. America                                                                                                                 |
| NEWS                         | 2                    |          |                         | "Ask CAS" for self-help around the clock                                                                                                                            |
| NEWS                         | 3                    | May      | 12                      | EXTEND option available in structure searching                                                                                                                      |
| NEWS                         | 4                    | May      | 12                      | Polymer links for the POLYLINK command completed in REGISTRY                                                                                                        |
| NEWS                         | 5                    | Мау      | 27                      | New UPM (Update Code Maximum) field for more efficient patent<br>SDIs in CAplus                                                                                     |
| NEWS                         | 6                    | May      | 27                      | CAplus super roles and document types searchable in REGISTRY                                                                                                        |
| NEWS                         | 7                    | Jun      | 28                      | Additional enzyme-catalyzed reactions added to CASREACT                                                                                                             |
| NEWS                         | 8                    | Jun      | 28                      | ANTE, AQUALINE, BIOENG, CIVILENG, ENVIROENG, MECHENG,<br>and WATER from CSA now available on STN(R)                                                                 |
| NEWS                         | 9                    | Jul      | 12                      | BEILSTEIN enhanced with new display and select options, resulting in a closer connection to BABS                                                                    |
| NEWS                         | 10                   | Jul      | 30                      | BEILSTEIN on STN workshop to be held August 24 in conjunction<br>with the 228th ACS National Meeting                                                                |
| NEWS                         | 11                   | AUG      | 02                      | IFIPAT/IFIUDB/IFICDB reloaded with new search and display fields                                                                                                    |
| NEWS                         | 12                   | AUG      | 02                      | CAplus and CA patent records enhanced with European and Japan<br>Patent Office Classifications                                                                      |
| NEWS                         | 13                   | AUG      | 02                      | STN User Update to be held August 22 in conjunction with the 228th ACS National Meeting                                                                             |
| NEWS                         | 14                   | AUG      | 02                      | The Analysis Edition of STN Express with Discover!<br>(Version 7.01 for Windows) now available                                                                      |
| NEWS                         | 15                   | AUG      | 04                      | Pricing for the Save Answers for SciFinder Wizard within<br>STN Express with Discover! will change September 1, 2004                                                |
| NEWS                         | 16                   | AUG      | 27                      | BIOCOMMERCE: Changes and enhancements to content coverage                                                                                                           |
| NEWS                         | 17                   | AUG      |                         | BIOTECHABS/BIOTECHDS: Two new display fields added for legal status data from INPADOC                                                                               |
| NEWS                         | EXPI                 | RESS     | MAC                     | LY 30 CURRENT WINDOWS VERSION IS V7.01, CURRENT<br>CINTOSH VERSION IS V6.0c(ENG) AND V6.0Jc(JP),<br>D CURRENT DISCOVER FILE IS DATED 11 AUGUST 2004                 |
| NEWS<br>NEWS<br>NEWS<br>NEWS | INTI<br>LOGI<br>PHOI | ER<br>IN | STN<br>Ger<br>We<br>Din | N Operating Hours Plus Help Desk Availability<br>meral Internet Information<br>Loome Banner and News Items<br>rect Dial and Telecommunication Network Access to STN |
| NEWS                         | www                  |          | CAS                     | S World Wide Web Site (general information)                                                                                                                         |

Enter NEWS followed by the item number or name to see news on that

specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

=> file .meeting 'EVENTLINE' IS NOT A VALID FILE NAME Enter "HELP FILE NAMES" at an arrow prompt (=>) for a list of files that are available. If you have requested multiple files, you can specify a corrected file name or you can enter "IGNORE" to continue accessing the remaining file names entered. ENTER A FILE NAME OR (IGNORE): ignore COST IN U.S. DOLLARS SINCE FILE TOTAL ENTRY SESSION FULL ESTIMATED COST 0.21 0.21 FILE 'AGRICOLA' ENTERED AT 11:19:43 ON 30 AUG 2004 FILE 'BIOTECHNO' ENTERED AT 11:19:43 ON 30 AUG 2004 COPYRIGHT (C) 2004 Elsevier Science B.V., Amsterdam. All rights reserved. FILE 'CONFSCI' ENTERED AT 11:19:43 ON 30 AUG 2004 COPYRIGHT (C) 2004 Cambridge Scientific Abstracts (CSA) FILE 'HEALSAFE' ENTERED AT 11:19:43 ON 30 AUG 2004 COPYRIGHT (C) 2004 Cambridge Scientific Abstracts (CSA) FILE 'IMSDRUGCONF' ENTERED AT 11:19:43 ON 30 AUG 2004 COPYRIGHT (C) 2004 IMSWORLD Publications Ltd. FILE 'LIFESCI' ENTERED AT 11:19:43 ON 30 AUG 2004 COPYRIGHT (C) 2004 Cambridge Scientific Abstracts (CSA) FILE 'MEDICONF' ENTERED AT 11:19:43 ON 30 AUG 2004 COPYRIGHT (c) 2004 FAIRBASE Datenbank GmbH, Hannover, Germany FILE 'PASCAL' ENTERED AT 11:19:43 ON 30 AUG 2004 Any reproduction or dissemination in part or in full, by means of any process and on any support whatsoever is prohibited without the prior written agreement of INIST-CNRS. COPYRIGHT (C) 2004 INIST-CNRS. All rights reserved. => (lead or mercury or chromium or cadimium) and screen and immobili L10 FILE AGRICOLA L20 FILE BIOTECHNO L30 FILE CONFSCI L4 0 FILE HEALSAFE L50 FILE IMSDRUGCONF L6 0 FILE LIFESCI L7 0 FILE MEDICONF L80 FILE PASCAL TOTAL FOR ALL FILES L9 0 (LEAD OR MERCURY OR CHROMIUM OR CADIMIUM) AND SCREEN AND IMMOBIL => (lead or mercury or chromium or cadimium) and screen and (immobilized or immobilizing or immobilized) L10 1 FILE AGRICOLA L11 6 FILE BIOTECHNO L12 0 FILE CONFSCI L13 0 FILE HEALSAFE L140 FILE IMSDRUGCONF 3 FILE LIFESCI L15 L16 0 FILE MEDICONF

FILE 'HOME' ENTERED AT 11:19:31 ON 30 AUG 2004

TOTAL FOR ALL FILES L18 19 (LEAD OR MERCURY OR CHROMIUM OR CADIMIUM) AND SCREEN AND (IMMOBI LIZED OR IMMOBILIZING OR IMMOBILIZED) => dup rem ENTER L# LIST OR (END):118 DUPLICATE IS NOT AVAILABLE IN 'IMSDRUGCONF, MEDICONF'. ANSWERS FROM THESE FILES WILL BE CONSIDERED UNIQUE PROCESSING COMPLETED FOR L18 12 DUP REM L18 (7 DUPLICATES REMOVED) T-19 => d l19 ibib abs total COPYRIGHT 2004 CSA on STN DUPLICATE 1 L19 ANSWER 1 OF 12 LIFESCI 2004:76236 LIFESCI ACCESSION NUMBER: Polychlorinated Biphenyls (PCBs) Detection in Food Samples TITLE: Using an Electrochemical Immunosensor AUTHOR: Laschi, S.; Mascini, M.; Scortichini, G.; Franek, M.; Mascini, M. CORPORATE SOURCE: Dipartimento di Chimica, Universita degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze (Italy) SOURCE: Journal of Agricultural and Food Chemistry [J. Agric. Food Chem.], (20030300) vol. 51, no. 7, pp. 1816-1822. ISSN: 0021-8561. DOCUMENT TYPE: Journal FILE SEGMENT: Х LANGUAGE : English SUMMARY LANGUAGE: English In this work, a disposable electrochemical immunosensor, based on a AB competitive assay scheme, was applied to detect polychlorinated biphenyls (PCBs) in food. For this purpose, antibodies against PCBs were directly immobilized onto the carbon surface of a disposable screen -printed electrode. A competition between the PCBs present in the sample and a fixed concentration of an enzyme-labeled PCB was realized and evaluated by electrochemical detection. Alkaline phosphatase was used as the enzyme label, coupled with differential pulse voltammetry (DPV) as the electrochemical technique. The immunosensor was tested on aroclor mixture detection (1242 and 1248) and then on some typologies of food samples to evaluate the possible application for real sample analysis. Samples analyzed were from different matrixes, such as sheep milk, bovine adipose tissue, and bovine muscle. Results obtained were compared with the accredited results according to ISO 17025 methods for PCB detection (HRGC-LRMS) as a confirmatory analysis. Preliminary results show the possibility to use this device as a screening method in food sample analysis. The negligible matrix effect observed may lead to a simplified extraction procedure, and considerable time and consumable savings are the immediate benefits given by the proposed method. ANSWER 2 OF 12 AGRICOLA Compiled and distributed by the National L19 Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2004) on STN DUPLICATE 2 ACCESSION NUMBER: 2003:23784 AGRICOLA DOCUMENT NUMBER: IND23316286 TITLE: Studies on chromium (VI) adsorption-desorption using immobilized fungal biomass. AUTHOR (S) : Bai, R.S.; Abraham, T.E. DNAL (TD930.A32) AVAILABILITY: SOURCE: Bioresource technology, Mar 2003. Vol. 87, No. 1. p. 17-26

L17

9 FILE PASCAL

| ,                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | Publisher: Oxford, U.K. : Elsevier Science Limited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                    | CODEN: BIRTEB; ISSN: 0960-8524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NOTE:                              | Includes references                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PUB. COUNTRY:                      | England; United Kingdom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DOCUMENT TYPE:                     | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FILE SEGMENT:                      | Non-U.S. Imprint other than FAO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LANGUAGE :                         | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| AB The aim of this stu             | ndy was to investigate the Cr(VI) biosorption potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                    | opus nigricans and to screen a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                    | c desorbing agents, in order to find out possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| application in mult                | iple sorption-desorption cycles. The biomass was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                    | ous mechanisms and evaluated for removal of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                    | s solution, mechanical stability to desorbents, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                    | e cycles. The finely powdered biomass, entrapped in five                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                    | matrices viz. calcium alginate, polyvinyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                    | de, polyisoprene, and polysulfone was compared for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                    | ency and stability to desorbents. Physical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                    | olyurethane foam and coir fiber was less efficient than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                    | methods. Of the different combinations $(%, w/v)$ of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| biomass dose compar                | red for each matrix, 8% (calcium alginate), 6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                    | PVA), 12% (polyisoprene), and 10% (polysulfone) were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                    | imum. The Cr sorption capacity (mg Cr/g sorbent) of all s was lesser than the native, powdered biomass.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                    | bacity decreased in the order of free biomass (119.2) >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                    | bed (101.5) > polyisoprene <b>immobilized</b> (98.76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                    | (96.69) > calcium alginate entrapped (84.29) >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                    | (56.89) > calcium algunate entrapped $(54.29)$ > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56.89) > (56. |
|                                    | cy and chemical resistance of the <b>immobilized</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                    | e order of polysulfone > polyisoprene > PVA >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                    | alcium alginate. The bound Cr(VI) could be eluted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                    | 0.01 N NaOH, NaHCO3, and Na2CO3. The adsorption data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                    | the <b>immobilized</b> biomass was evaluated by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                    | a model. The successive sorption-desorption studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                    | one entrapped biomass indicated that the biomass beads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                    | ed and reused in more than 25 cycles and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| regeneration effici                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| L19 ANSWER 3 OF 12 BI<br>DUPLICATE | IOTECHNO COPYRIGHT 2004 Elsevier Science B.V. on STN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ACCESSION NUMBER:                  | 2002:35232483 BIOTECHNO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TITLE:                             | Microbial biosensor array with transport mutants of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| * * * 113 •                        | Escherichia coli K12 for the simultaneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                    | determination of mono-and disaccharides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| AUTHOR :                           | Held M.; Schuhmann W.; Jahreis K.; Schmidt HL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CORPORATE SOURCE:                  | HL. Schmidt, Lehrstuhl fur Biologische Chemie, TU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CONFORATE DUURCE.                  | n. b. bennite, henriseuni itt biologische chemie, it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

SOURCE:

(1089-1094), 26 reference(s) CODEN: BBIOE4 ISSN: 0956-5663 PUBLISHER ITEM IDENT.: S0956566302001033 DOCUMENT TYPE: Journal; Article COUNTRY: United Kingdom LANGUAGE: English SUMMARY LANGUAGE: English AN 2002:35232483 BIOTECHNO

AB An automated flow-injection system with an integrated biosensor array using bacterial cells for the selective and simultaneous determination various mono- and disaccharides is described. The selectivity of the individually addressable sensors of the array was achieved by the combination of the metabolic response, measured as the 0.sub.2 consumption, of bacterial mutants of Escherichia coli K12 lacking different transport systems for individual carbohydrates. κ-Carrageenan was used as immobilization matrix for entrapment of

Germany.

Munchen, Vottingerstrasse 40, D-85350 Freising,

Biosensors and Bioelectronics, (2002), 17/11-12

the bacterial cells in front of 6 individually addressable working electrodes of a **screen**-printed sensor array. The local consumption of molecular oxygen caused by the metabolic activity of the **immobilized** cells was amperometrically determined at the underlying **screen**-printed gold electrodes at a working potential of -600 mV vs. Ag/AgCl. Addition of mono- or disaccharides for which functional transport systems exist in the used transport mutant strains of E. coli K12 **leads** to an enhanced metabolic activity of the **immobilized** bacterial cells and to a concomitant depletion of oxygen at the electrode. Parallel determination of fructose, glucose, and sucrose was performed demonstrating the high selectivity of the proposed analytical system. .COPYRGT. 2002 Published by Elsevier Science B.V.

| L19 ANSWER 4 OF 12 | BIOTECHNO COPYRIGHT 2004 Elsevier Science B.V. on STN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACCESSION NUMBER:  | 2002:34174576 BIOTECHNO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TITLE:             | Diagnostic biochip array for fast and sensitive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | detection of K-ras mutations in stool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AUTHOR :           | Prix L.; Uciechowski P.; Bockmann B.; Giesing M.;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | Schuetz A.J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CORPORATE SOURCE:  | A.J. Schuetz, Inst. fur Molekulare NanoTechnologie,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | Berghauser Strasse 295, 45659 Recklinghausen, Germany.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    | E-mail: a.schuetz@imnt.de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SOURCE:            | Clinical Chemistry, (2002), 48/3 (428-435), 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | reference(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    | CODEN: CLCHAU ISSN: 0009-9147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DOCUMENT TYPE:     | Journal; Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| COUNTRY:           | United States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| LANGUAGE :         | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SUMMARY LANGUAGE:  | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AN 2002:34174576   | BIOTECHNO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    | and a line that the line of a line of the state of the second stat |

AB Background: Tumor cells that shed into stool are attractive targets for molecular screening and early detection of colon or pancreatic malignancies. We developed a diagnostic test to screen for 10 of the most common mutations of codons 12 and 13 of the K-ras gene by hybridization to a new biochip array. Methods: DNA was isolated from 26 stool samples by column-based extraction from 9 cell lines. Peptide nucleic acid (PNA)-mediated PCR clamping was used for mutant-specific amplification. We used a biochip, consisting of a small plastic support with covalently immobilized 13mer oligonucleotides. The read out of the biochip was done by confocal time-resolved laser scanning. Hybridization, scanning, and data evaluation could be performed in <2 h. Results: Approximately 80 ng of DNA was obtained from 200-mg stool samples. No inhibition of the PCR by remaining impurities from stool was observed. Mutation detection was possible in 1000-fold excess of wild-type sequence. Discrimination ratios between the mutations were >19 as demonstrated by hybridization with tumor cell line DNA. Stool samples (n = 26) were analyzed in parallel with PNA-PCR, restriction assay for K-ras codon 12 mutations, sequencing, and hybridization to the biochip. Nine mutations were found by hybridization, all confirmed by sequencing. PNA-PCR alone leads to an overestimation of mutations because suppression of the wild type is not effective enough with high concentrations of wild-type DNA. The restriction assay found only four mutations. Conclusions: The K-ras biochip is well suited for fast mutation detection from stool in colorectal cancer screening. .COPYRGT. 2002 American Association for Clinical Chemistry.

| L19 ANSWER 5 OF 12  | PASCAL COPYRIGHT 2004 INIST-CNRS. ALL RIGHTS RESERVED.                                   |
|---------------------|------------------------------------------------------------------------------------------|
| on STN              |                                                                                          |
| ACCESSION NUMBER:   | 2002-0292637 PASCAL                                                                      |
| COPYRIGHT NOTICE:   | Copyright .COPYRGT. 2002 INIST-CNRS. All rights reserved.                                |
| TITLE (IN ENGLISH): | Diagnostic biochip array for fast and sensitive<br>detection of K-ras mutations in stool |

| AUTHOR:                                 | PRIX Lothar; UCIECHOWSKI Peter; BOECKMANN Beatrix;<br>GIESING Michael; SCHUETZ Andreas J.                                   |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| CORPORATE SOURCE:                       | Institut fuer Molekulare NanoTechnologie, Berghaeuser<br>Strasse 295, 45659 Recklinghausen, Germany, Federal<br>Republic of |
| SOURCE:                                 | Clinical chemistry : (Baltimore, Md.), (2002), 3(48),<br>428-435, 29 refs.                                                  |
|                                         | ISSN: 0009-9147 CODEN: CLCHAU                                                                                               |
| DOCUMENT TYPE:                          | Journal                                                                                                                     |
| BIBLIOGRAPHIC LEVEL:                    | Analytic                                                                                                                    |
| COUNTRY :<br>LANGUAGE :                 | United States<br>English                                                                                                    |
| AVAILABILITY:                           | INIST-7603, 354000100284300070                                                                                              |
|                                         | ASCAL                                                                                                                       |
| CP Copyright .COPYR                     | GT. 2002 INIST-CNRS. All rights reserved.                                                                                   |
| AB Background: Tumo:                    | r cells that shed into stool are attractive targets for                                                                     |
| molecular screen:                       | ing and early detection of colon or pancreatic                                                                              |
| of the most commo                       | developed a diagnostic test to <b>screen</b> for 10<br>on mutations of codons 12 and 13 of the K-ras gene by                |
| hybridization to                        | a new biochip array. Methods: DNA was isolated from 26                                                                      |
| stool samples by                        | column-based extraction from 9 cell lines. Peptide                                                                          |
| nucleic acid (PNA                       | A) - mediated PCR clamping was used for mutant-specific                                                                     |
| amplification. We                       | e used a biochip, consisting of a small plastic support                                                                     |
| with covalently i                       | mmobilized 13mer oligonucleotides. The read<br>p was done by confocal time-resolved laser scanning.                         |
| Hybridization, so                       | canning, and data evaluation could be performed in <2 h.                                                                    |
| Results: Approxim                       | nately 80 ng of DNA was obtained from 200-mg stool                                                                          |
| samples. No inhib                       | Dition of the PCR by remaining impurities from stool was                                                                    |
| observed. Mutatic                       | on detection was possible in 1000-fold excess of                                                                            |
| as demonstrated h                       | ce. Discrimination ratios between the mutations were >19<br>by hybridization with tumor cell line DNA. Stool samples        |
| (n = 26) were ana                       | lyzed in parallel with PNA-PCR, restriction assay for                                                                       |
| K-ras codon 12 mu                       | itations, sequencing, and hybridization to the biochip.                                                                     |
| Nine mutations we                       | ere found by hybridization, all confirmed by sequencing.                                                                    |
| suppression of th                       | ds to an overestimation of mutations because<br>we wild type is not effective enough with high                              |
| concentrations of                       | wild-type DNA. The restriction assay found only four                                                                        |
| mutations. Conclu                       | sions: The K-ras biochip is well suited for fast                                                                            |
| mutation detectio                       | on from stool in colorectal cancer screening.                                                                               |
|                                         | IOTECHNO COPYRIGHT 2004 Elsevier Science B.V. on STN                                                                        |
| DUPLICATE<br>ACCESSION NUMBER:          | 2002:34142295 BIOTECHNO                                                                                                     |
| TITLE:                                  | 2002:34142295 BIOTECHNO<br>Immobilized receptor- and transporter-based                                                      |
|                                         | liquid chromatographic phases for on-line                                                                                   |
|                                         | pharmacological and biochemical studies: A mini-review                                                                      |
| AUTHOR:                                 | Moaddel R.; Lu L.; Baynham M.; Wainer I.W.                                                                                  |
| CORPORATE SOURCE:                       | I.W. Wainer, National Institute on Aging, National                                                                          |
|                                         | Institute of Healths, Gerontology Research Center,<br>5600 Nathan Shock Drive, Baltimore, MD 21224-6825,                    |
|                                         | United States.                                                                                                              |
|                                         | E-mail: wainerir@grc.nia.nih.gov                                                                                            |
| SOURCE :                                | Journal of Chromatography B: Analytical Technologies                                                                        |
|                                         | in the Biomedical and Life Sciences, (2002), 768/1<br>(41-53), 43 reference(s)                                              |
|                                         | CODEN: JCBAAI ISSN: 1570-0232                                                                                               |
| PUBLISHER ITEM IDENT .:                 | S0378434701004844                                                                                                           |
| DOCUMENT TYPE:                          | Journal; General Review                                                                                                     |
| COUNTRY:                                | Netherlands                                                                                                                 |
| LANGUAGE:                               | English                                                                                                                     |
| SUMMARY LANGUAGE:<br>AN 2002:34142295 B | English<br>IOTECHNO                                                                                                         |
|                                         | sses the synthesis and characterization of two different                                                                    |
| types of receptor                       | -based liquid chromatographic supports, one based upon a                                                                    |

trans-membrane ligand gated ion channel receptor (the nicotinic acetylcholine receptor) and the other a soluble nuclear receptor (the estrogen receptor). In addition, studies with the P-glycoprotein transporter are also reported. The nicotinic receptor was immobilized via hydrophobic insertion into the interstitial spaces of an immobilized artificial membrane (IAM) stationary phase, the estrogen receptor was tethered to a hydrophilic stationary phase and the membranes containing the Pgp transporter were coated on the surface of the IAM stationary phase. The stationary phases were characterized using known ligands and substrates for the respective nonimmobilized proteins. The results from zonal and frontal chromatographic experiments demonstrated that the stationary phases could be used to determine binding affinities (expressed as dissociation constants, K.sub.d's) and to resolve mixtures of ligands according to their relative affinities. In addition, competitive ligand binding studies on the P-glycoprotein-based stationary phase have established that this phase can be used to identify and characterize competitive displacement and allosteric interactions. These studies demonstrate that immobilized-receptor phases can be used for on-line pharmacological studies and as rapid screens for the isolation and identification of lead drug candidates from complex biological or chemical mixtures. .COPYRGT. 2002 Elsevier Science B.V. All rights reserved. L19 ANSWER 7 OF 12 LIFESCI COPYRIGHT 2004 CSA on STN ACCESSION NUMBER: 2002:53611 LIFESCI TITLE: Assessing the Absorption of New Pharmaceuticals AUTHOR: Hidalgo, I.J. CORPORATE SOURCE: Absorption Systems, LP, 440 Creamery Way, Suite 300, Exton, PA 19341, USA; E-mail: hidalgo@absorption.com SOURCE: Current Topics in Medicinal Chemistry [Curr. Top. Med. Chem.], (20011100) vol. 1, no. 5, pp. 385-401. Compound Optimization in Early and Late-Phase Drug Discovery: Physiochemical, Pharmacokinetic, Drug Metabolism and Toxicologic Assessments.. ISSN: 1568-0266. DOCUMENT TYPE: Journal TREATMENT CODE: General Review FILE SEGMENT: W3 LANGUAGE: English SUMMARY LANGUAGE: English The advent of more efficient methods to synthesize and screen AB new chemical compounds is increasing the number of chemical leads identified in the drug discovery phase. Compounds with good biological activity may fail to become drugs due to insufficient oral absorption. Selection of drug development candidates with adequate absorption characteristics should increase the probability of success in the development phase. To assess the absorption potential of new chemical entities numerous in vitro and in vivo model systems have been used. Many laboratories rely on cell culture models of intestinal permeability such as, Caco-2, HT-29 and MDCK. To attempt to increase the throughput of permeability measurements, several physicochemical methods such as, immobilized artificial membrane (IAM) columns and parallel artificial membrane permeation assay (PAMPA) have been used. More recently, much attention has been given to the development of computational methods to predict drug absorption. However, it is clear that no single method will sufficient for studying drug absorption, but most likely a combination of systems will be needed. Higher throughput, less reliable methods could be used to discover 'loser' compounds, whereas lower throughput, more accurate methods could be used to optimize the absorption properties of lead compounds. Finally, accurate methods are needed to understand absorption mechanisms (efflux -limited absorption, carrier-mediated, intestinal metabolism) that may limit intestinal drug absorption. This information could be extremely valuable

to medicinal chemists in the selection of favorable chemo-types. This review describes different techniques used for evaluating drug absorption and indicates their advantages and disadvantages.

| L19 ANSWER 8 OF 12 B<br>DUPLICATE | IOTECHNO COPYRIGHT 2004 Elsevier Science B.V. on STN   |
|-----------------------------------|--------------------------------------------------------|
| ACCESSION NUMBER:                 | 2000:30220191 BIOTECHNO                                |
| TITLE:                            | A disposable amperometric sensor <b>screen</b>         |
|                                   | printed on a nitrocellulose strip: A glucose biosensor |
|                                   | employing <b>lead</b> oxide as an                      |
|                                   | interference-removing agent                            |
| AUTHOR :                          | Cui G.; Sang Jin Kim; Sung Hyuk Choi; Nam H.; Geun Sig |
|                                   | Cha; Paeng KJ.                                         |
| CORPORATE SOURCE:                 | G.S. Cha, Chemical Sensor Research Group, Department   |
|                                   | of Chemistry, Kwangwoon University, 447-1 Wolgye-Dong, |
|                                   | Nowon-Ku, Seoul 139-701, South Korea.                  |
| SOURCE :                          | Analytical Chemistry, (15 APR 2000), 72/8 (1925-1929)  |
|                                   | CODEN: ANCHAM ISSN: 0003-2700                          |
| DOCUMENT TYPE:                    | Journal; Article                                       |
| COUNTRY:                          | United States                                          |
| LANGUAGE :                        | English                                                |
| SUMMARY LANGUAGE:                 | English                                                |
| AN 2000:30220191 BI               | OTECHNO                                                |
| AB A new type of disp             | osable amperometric sensor is devised by <b>screen</b> |
| printing thick-fil                | m electrodes directly on a porous nitrocellulose (NC)  |
|                                   |                                                        |

strip. The chromatographic NC strip is then utilized to introduce various sample pretreatment layers. As a preliminary application, a glucose biosensor based on hydrogen peroxide detection is constructed by immobilizing glucose oxidase (GOx) on the NC electrode strip and by formulating a strong oxidation layer (i.e., PbO.sub.2) at the sample loading area, placed below the GOx reaction band. The screen -printed PbO.sub.2 paste serves as a sample pretreatment layer that removes interference by its strong oxidizing ability. Samples applied are carried chromatographically, via the PbO.sub.2 paste, to the GOx layer, and glucose is catalyzed to liberate hydrogen peroxide, which is then detected at the electrode surface. The proposed NC/PbO.sub.2 strip sensor is shown to be virtually insusceptible to interfering species such as acetaminophen and ascorbic and uric acids and to exhibit good performance, in terms of the sensor-to-sensor reproducibility (standard deviation,  $\pm 0.026 \pm 0.086 \mu A$ ), the sensitivity (slope, -0.183  $\mu A/mM$ ), and the linearity (correlation coefficient, 0.994 in the range of 0-10 mM).

| L19 ANSWER 9 OF 12 B<br>ACCESSION NUMBER:<br>TITLE: | IOTECHNO COPYRIGHT 2004 Elsevier Science B.V. on STN<br>2000:30069062 BIOTECHNO<br>Biosensor analysis of drug-target interactions: Direct                                                                                           |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AUTHOR :                                            | and competitive binding assays for investigation of<br>interactions between thrombin and thrombin inhibitors<br>Karlsson R.; Kullman-Magnusson M.; Hamalainen M.D.;<br>Remaeus A.; Andersson K.; Borg P.; Gyzander E.; Deinum<br>J. |
| CORPORATE SOURCE:                                   | J.<br>R. Karlsson, Biacore AB, Rapsgatan 7, SE-754 50                                                                                                                                                                               |
|                                                     | Uppsala, Sweden.                                                                                                                                                                                                                    |
| SOURCE:                                             | E-mail: robert.karlsson@eu.biacore.com<br>Analytical Biochemistry, (01 FEB 2000), 278/1 (1-13),<br>15 reference(s)                                                                                                                  |
|                                                     | CODEN: ANBCA2 ISSN: 0003-2697                                                                                                                                                                                                       |
| DOCUMENT TYPE:                                      | Journal; Article                                                                                                                                                                                                                    |
| COUNTRY:                                            | United States                                                                                                                                                                                                                       |
| LANGUAGE :                                          | English                                                                                                                                                                                                                             |
| SUMMARY LANGUAGE:                                   | English                                                                                                                                                                                                                             |
| AN 2000:30069062 B                                  | OTECHNO                                                                                                                                                                                                                             |
| AB The sensitivity of                               | BIACORE technology is sufficient for detection and                                                                                                                                                                                  |
| characterization of                                 | of binding events involving low-molecular-weight                                                                                                                                                                                    |

compounds and their immobilized protein targets. The technology requires no labeling and provides information on the stability of the compound/target complex with a single injection of the compound. This is useful for qualifying hits obtained in a primary screen and in lead optimization. Although immobilized targets can be reused, the surface may slowly deteriorate, solvent effects can distort binding levels during injection of compounds, and some compounds may exhibit broad protein selectivity rather than target specificity. A reliable direct binding assay for compounds binding to immobilized thrombin using a combination of two reference surfaces, a dextran surface for subtraction and calibration of solvent effects and a protein surface for identification of compounds that tend to bind proteins, has been developed. Eleven compounds with known binding specificity to thrombin and 159 additional compounds were investigated. All compounds with known binding specificity were identified at 1 and 10  $\mu M$  concentration. One additional compound was scored as positive. The direct binding assay compared favorably with two competitive assay formats, a surface competitive assay and a inhibitor in solution assay, that were examined in parallel.

ANCHED TO OF TO DROOM

T 1 O

| L19 ANSWER 10 OF 12 P<br>on STN | PASCAL COPYRIGHT 2004 INIST-CNRS. ALL RIGHTS RESERVED.                                                                                           |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| ACCESSION NUMBER:               | 1998-0045605 PASCAL                                                                                                                              |
| COPYRIGHT NOTICE:               | Copyright .COPYRGT. 1998 INIST-CNRS. All rights reserved.                                                                                        |
| TITLE (IN ENGLISH):             | Biochemical detection for direct bead surface analysis                                                                                           |
| AUTHOR:                         | LUTZ E. S. M.; IRTH H.; TJADEN U. R.; VAN DER GREEF J.                                                                                           |
| CORPORATE SOURCE:               | Division of Analytical Chemistry, Leiden/Amsterdam<br>Center for Drug Research, Leiden University, P.O. Box<br>9502, 2300 RA Leiden, Netherlands |
| SOURCE:                         | Analytical chemistry : (Washington, DC), (1997),                                                                                                 |
|                                 | 69(23), 4878-4884, 23 refs.                                                                                                                      |
|                                 | ISSN: 0003-2700 CODEN: ANCHAM                                                                                                                    |
| DOCUMENT TYPE:                  | Journal                                                                                                                                          |
| BIBLIOGRAPHIC LEVEL:            | Analytic                                                                                                                                         |
| COUNTRY:                        | United States                                                                                                                                    |
| LANGUAGE :                      | English                                                                                                                                          |
| AVAILABILITY:                   | INIST-120B, 354000079516850220                                                                                                                   |
|                                 | CAL                                                                                                                                              |
| CP Copyright .COPYRGT           | . 1998 INIST-CNRS. All rights reserved.                                                                                                          |
| AB A continuous-flow            | biochemical detection system is presented which                                                                                                  |
| recognizes biologi              | cally active compounds <b>immobilized</b> to solid                                                                                               |
| phases. This appro              | ach can be used to <b>screen</b> , for example.                                                                                                  |
| solid-phase combin              | atorial libraries for <b>lead</b> compounds.                                                                                                     |
| Biochemical detect              | ion is performed by mixing a plug of a solid-phase                                                                                               |
| suspension with la              | beled affinity protein. During a short reaction time                                                                                             |
| the labeled affini              | ty protein will only bind to ligands, i.e., compounds                                                                                            |
| with biological ac              | tivity. Hereafter, the free and bound labels are                                                                                                 |
| separated by means              | of a hollow fiber module. Quantitation of the free                                                                                               |
| label is performed              | with a conventional flow-through fluorescence                                                                                                    |
| detector. Total as              | say time amounts to less than 3 min. Biochemical                                                                                                 |
| detection for dire              | ct bead surface analysis was developed for two model                                                                                             |
| systems. The first              | model system used fluorescence-labeled avidin as                                                                                                 |
| affinity protein a              | nd its ligands biotin and iminobiotin                                                                                                            |
| immobilized to aga:             | rose as analytes. The second model system used                                                                                                   |
| fluorescence-label              | ed antisheep (Fab).sub.2 fragments as affinity protein                                                                                           |
| and different IgGs              | immobilized to agarose as analytes. The                                                                                                          |
| impositional lines              | s approach for recognition of solid-phase                                                                                                        |
| 100% hit rate.                  | s was documented by screening 50 samples with a                                                                                                  |
| toon mit tate.                  |                                                                                                                                                  |
|                                 |                                                                                                                                                  |

L19 ANSWER 11 OF 12 PASCAL COPYRIGHT 2004 INIST-CNRS. ALL RIGHTS RESERVED. on STN ACCESSION NUMBER: 1996-0121747 PASCAL

| COPYRIGHT NOTICE:                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Copyright .COPYRGT. 1996 INIST-CNRS. All rights reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TITLE (IN ENGLISH)                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AUTHOR :                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SILBER A.; HAMPP N.; SCHUHMANN W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CORPORATE SOURCE:                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ludwig-Maximilians-Univ. Muenchen, Inst. physikalische<br>Chemie, 80333 Muenchen, Germany, Federal Republic of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SOURCE :                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Biosensors & bioelectronics, (1996), 11(3), 215-223,<br>18 refs.<br>ISSN: 0956-5663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DOCUMENT TYPE:                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Journal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BIBLIOGRAPHIC LEVE                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L: Analytic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| COUNTRY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                | United Kingdom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| LANGUAGE :                                                                                                                                                                                                                                                                                                                                                                                                                                                              | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AVAILABILITY:                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INIST-20668, 354000052553600020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AN 1996-0121747<br>CP Copyright .C                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AB Electropolvm                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OPYRGT. 1996 INIST-CNRS. All rights reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| OD screen-pr                                                                                                                                                                                                                                                                                                                                                                                                                                                            | erization of the phenothiazine derivative methylene blue (MB)<br>inted, thick-film gold electrodes <b>leads</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| to electroca                                                                                                                                                                                                                                                                                                                                                                                                                                                            | talytically active and conducting layers of poly(methylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| blue) (PMB)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in intimate and stable contact with the electrode surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| The catalyti                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c properties of the PMB films allow anodic oxidation of NADH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| at potential                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s as low as +200 mV vs. the saturated calomel electrode (SCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| reducing int                                                                                                                                                                                                                                                                                                                                                                                                                                                            | erferences from co-oxidizable species as well as minimizing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| electrode fo                                                                                                                                                                                                                                                                                                                                                                                                                                                            | uling by enabling a simultaneous two-electron transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mechanism. D                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ehydrogenase-based biosensors employing PMB-modified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| into the DMP                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lectrodes are obtained either by entrapment of the enzyme<br>layer itself or by laminating an enzyme membrane made of an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| aqueous poly                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (vinylacetate) dispersion over the PMB-modified electrode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Both methods                                                                                                                                                                                                                                                                                                                                                                                                                                                            | are used to fabricate glucose biosensors which can be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| operated at                                                                                                                                                                                                                                                                                                                                                                                                                                                             | low overpotentials, i.e. +200 mV vs. SCE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| operated at<br>L19 ANSWER 12 OF                                                                                                                                                                                                                                                                                                                                                                                                                                         | low overpotentials, i.e. +200 mV vs. SCE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                    | low overpotentials, i.e. +200 mV vs. SCE.<br>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br>97:58960 LIFESCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| operated at<br>L19 ANSWER 12 OF                                                                                                                                                                                                                                                                                                                                                                                                                                         | <pre>low overpotentials, i.e. +200 mV vs. SCE. 12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6 97:58960 LIFESCI Development of screen-printed enzyme electrodes</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>low overpotentials, i.e. +200 mV vs. SCE. 12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6 97:58960 LIFESCI Development of screen-printed enzyme electrodes for the estimation of fish quality</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:                                                                                                                                                                                                                                                                                                                                                                                               | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:                                                                                                                                                                                                                                                                                                                                                                                               | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,<br/>D-48149 Muenster, Germany</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:<br>CORPORATE SOURCE:                                                                                                                                                                                                                                                                                                                                                                          | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:<br>CORPORATE SOURCE:<br>SOURCE:                                                                                                                                                                                                                                                                                                                                                               | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,<br/>D-48149 Muenster, Germany<br/>SENSORS ACTUATORS B: CHEM., (1996) vol. B32, no. 2, pp.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:<br>CORPORATE SOURCE:<br>SOURCE:<br>DOCUMENT TYPE:                                                                                                                                                                                                                                                                                                                                             | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,<br/>D-48149 Muenster, Germany<br/>SENSORS ACTUATORS B: CHEM., (1996) vol. B32, no. 2, pp.<br/>107-113.<br/>ISSN: 0925-4005.<br/>Journal</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:<br>CORPORATE SOURCE:<br>SOURCE:<br>DOCUMENT TYPE:<br>FILE SEGMENT:                                                                                                                                                                                                                                                                                                                            | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,<br/>D-48149 Muenster, Germany<br/>SENSORS ACTUATORS B: CHEM., (1996) vol. B32, no. 2, pp.<br/>107-113.<br/>ISSN: 0925-4005.<br/>Journal<br/>Q4</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:<br>CORPORATE SOURCE:<br>SOURCE:<br>DOCUMENT TYPE:<br>FILE SEGMENT:<br>LANGUAGE:                                                                                                                                                                                                                                                                                                               | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,<br/>D-48149 Muenster, Germany<br/>SENSORS ACTUATORS B: CHEM., (1996) vol. B32, no. 2, pp.<br/>107-113.<br/>ISSN: 0925-4005.<br/>Journal<br/>Q4<br/>English</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:<br>CORPORATE SOURCE:<br>SOURCE:<br>DOCUMENT TYPE:<br>FILE SEGMENT:<br>LANGUAGE:<br>SUMMARY LANGUAGE:                                                                                                                                                                                                                                                                                          | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,<br/>D-48149 Muenster, Germany<br/>SENSORS ACTUATORS B: CHEM., (1996) vol. B32, no. 2, pp.<br/>107-113.<br/>ISSN: 0925-4005.<br/>Journal<br/>Q4<br/>English<br/>English<br/>English</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:<br>CORPORATE SOURCE:<br>SOURCE:<br>DOCUMENT TYPE:<br>FILE SEGMENT:<br>LANGUAGE:<br>SUMMARY LANGUAGE:<br>AB Enzyme electr                                                                                                                                                                                                                                                                      | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,<br/>D-48149 Muenster, Germany<br/>SENSORS ACTUATORS B: CHEM., (1996) vol. B32, no. 2, pp.<br/>107-113.<br/>ISSN: 0925-4005.<br/>Journal<br/>Q4<br/>English<br/>English<br/>Dedes for the determination of biogenic amines have been</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:<br>CORPORATE SOURCE:<br>SOURCE:<br>DOCUMENT TYPE:<br>FILE SEGMENT:<br>LANGUAGE:<br>SUMMARY LANGUAGE:<br>AB Enzyme electr<br>developed usi                                                                                                                                                                                                                                                     | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,<br/>D-48149 Muenster, Germany<br/>SENSORS ACTUATORS B: CHEM., (1996) vol. B32, no. 2, pp.<br/>107-113.<br/>ISSN: 0925-4005.<br/>Journal<br/>Q4<br/>English<br/>English<br/>pdes for the determination of biogenic amines have been<br/>ng monoamine oxidase (MAO) from Aspergillus niger and</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:<br>CORPORATE SOURCE:<br>SOURCE:<br>DOCUMENT TYPE:<br>FILE SEGMENT:<br>LANGUAGE:<br>SUMMARY LANGUAGE:<br>AB Enzyme electr<br>developed usi<br>putrescine ox<br>the electroch                                                                                                                                                                                                                   | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,<br/>D-48149 Muenster, Germany<br/>SENSORS ACTUATORS B: CHEM., (1996) vol. B32, no. 2, pp.<br/>107-113.<br/>ISSN: 0925-4005.<br/>Journal<br/>Q4<br/>English<br/>English<br/>odes for the determination of biogenic amines have been<br/>ng monoamine oxidase (MAO) from Aspergillus niger and<br/>idase (PO) from Micrococcus rubens. Determination is based on<br/>emical oxidation of enzymatically produced H sub(2)O sub(2)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:<br>CORPORATE SOURCE:<br>SOURCE:<br>DOCUMENT TYPE:<br>FILE SEGMENT:<br>LANGUAGE:<br>SUMMARY LANGUAGE:<br>AB Enzyme electr<br>developed usi<br>putrescine ox<br>the electroch<br>at screen-pri                                                                                                                                                                                                  | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,<br/>D-48149 Muenster, Germany<br/>SENSORS ACTUATORS B: CHEM., (1996) vol. B32, no. 2, pp.<br/>107-113.<br/>ISSN: 0925-4005.<br/>Journal<br/>Q4<br/>English<br/>English<br/>odes for the determination of biogenic amines have been<br/>ng monoamine oxidase (MAO) from Aspergillus niger and<br/>idase (PO) from Micrococcus rubens. Determination is based on<br/>emical oxidation of enzymatically produced H sub(2)O sub(2)<br/>nted platinum electrodes. The enzymes are</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:<br>CORPORATE SOURCE:<br>SOURCE:<br>DOCUMENT TYPE:<br>FILE SEGMENT:<br>LANGUAGE:<br>SUMMARY LANGUAGE:<br>AB Enzyme electr<br>developed usi<br>putrescine ox<br>the electroch<br>at screen-pri:<br>immobilized of                                                                                                                                                                               | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,<br/>D-48149 Muenster, Germany<br/>SENSORS ACTUATORS B: CHEM., (1996) vol. B32, no. 2, pp.<br/>107-113.<br/>ISSN: 0925-4005.<br/>Journal<br/>Q4<br/>English<br/>Dedes for the determination of biogenic amines have been<br/>ng monoamine oxidase (MAO) from Aspergillus niger and<br/>idase (PO) from Micrococcus rubens. Determination is based on<br/>emical oxidation of enzymatically produced H sub(2)O sub(2)<br/>nted platinum electrodes. The enzymes are<br/>n silanized electrodes by cross-linking with</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:<br>CORPORATE SOURCE:<br>SOURCE:<br>DOCUMENT TYPE:<br>FILE SEGMENT:<br>LANGUAGE:<br>SUMMARY LANGUAGE:<br>AB Enzyme electr<br>developed usi<br>putrescine ox<br>the electroch<br>at screen-pri:<br>immobilized or<br>glutaraldehyd                                                                                                                                                              | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>l2 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,<br/>D-48149 Muenster, Germany<br/>SENSORS ACTUATORS B: CHEM., (1996) vol. B32, no. 2, pp.<br/>107-113.<br/>ISSN: 0925-4005.<br/>Journal<br/>Q4<br/>English<br/>bodes for the determination of biogenic amines have been<br/>ng monoamine oxidase (MAO) from Aspergillus niger and<br/>idase (PO) from Micrococcus rubens. Determination is based on<br/>emical oxidation of enzymatically produced H sub(2)O sub(2)<br/>nted platinum electrodes. The enzymes are<br/>n silanized electrodes by cross-linking with<br/>a. Compositions of the immobilization mixtures are optimized</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:<br>CORPORATE SOURCE:<br>SOURCE:<br>DOCUMENT TYPE:<br>FILE SEGMENT:<br>LANGUAGE:<br>SUMMARY LANGUAGE:<br>AB Enzyme electr<br>developed usi<br>putrescine ox<br>the electroch<br>at screen-pri:<br>immobilized or<br>glutaraldehyd<br>with respect                                                                                                                                              | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>l2 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,<br/>D-48149 Muenster, Germany<br/>SENSORS ACTUATORS B: CHEM., (1996) vol. B32, no. 2, pp.<br/>107-113.<br/>ISSN: 0925-4005.<br/>Journal<br/>Q4<br/>English<br/>Dodes for the determination of biogenic amines have been<br/>ng monoamine oxidase (MAO) from Aspergillus niger and<br/>idase (PO) from Micrococcus rubens. Determination is based on<br/>emical oxidation of enzymatically produced H sub(2)O sub(2)<br/>nted platinum electrodes. The enzymes are<br/>n silanized electrodes by cross-linking with<br/>e. Compositions of the immobilization mixtures are optimized<br/>to stability, sensitivity and selectivity of the sensors The<br/>enter the sensors of the sensof</pre>                                                          |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:<br>CORPORATE SOURCE:<br>SOURCE:<br>DOCUMENT TYPE:<br>FILE SEGMENT:<br>LANGUAGE:<br>SUMMARY LANGUAGE:<br>AB Enzyme electr<br>developed usi<br>putrescine ox<br>the electroch<br>at screen-pri:<br>immobilized of<br>glutaraldehyd<br>with respect<br>electrodes us                                                                                                                             | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,<br/>D-48149 Muenster, Germany<br/>SENSORS ACTUATORS B: CHEM., (1996) vol. B32, no. 2, pp.<br/>107-113.<br/>ISSN: 0925-4005.<br/>Journal<br/>Q4<br/>English<br/>English<br/>odes for the determination of biogenic amines have been<br/>ng monoamine oxidase (MAO) from Aspergillus niger and<br/>idase (PO) from Micrococcus rubens. Determination is based on<br/>emical oxidation of enzymatically produced H sub(2)O sub(2)<br/>nted platinum electrodes. The enzymes are<br/>n silanized electrodes by cross-linking with<br/>e. Compositions of the immobilization mixtures are optimized<br/>to stability, sensitivity and selectivity of the sensors. The<br/>ing MAO as the biochemical component respond to several</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:<br>CORPORATE SOURCE:<br>SOURCE:<br>DOCUMENT TYPE:<br>FILE SEGMENT:<br>LANGUAGE:<br>SUMMARY LANGUAGE:<br>AB Enzyme electr<br>developed usi<br>putrescine ox<br>the electroch<br>at screen-pri:<br>immobilized of<br>glutaraldehyd<br>with respect<br>electrodes us<br>amines includ.                                                                                                           | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,<br/>D-48149 Muenster, Germany<br/>SENSORS ACTUATORS B: CHEM., (1996) vol. B32, no. 2, pp.<br/>107-113.<br/>ISSN: 0925-4005.<br/>Journal<br/>Q4<br/>English<br/>bodes for the determination of biogenic amines have been<br/>ng monoamine oxidase (MAO) from Aspergillus niger and<br/>idase (PO) from Micrococcus rubens. Determination is based on<br/>emical oxidation of enzymatically produced H sub(2)O sub(2)<br/>nted platinum electrodes. The enzymes are<br/>n silanized electrodes by cross-linking with<br/>e. Compositions of the immobilization mixtures are optimized<br/>to stability, sensitivity and selectivity of the sensors. The<br/>ing MAO as the biochemical component respond to several<br/>ing histamine, an important amine in the determination of<br/>Destruction of the sensors. The sensors. The sensors. The<br/>Sensors and the sensors. The sensors of the sensors. The sensors of the sensors. The sensors. The sensors of the sensors of the sensors. The sensors of the sensors. The sensors of the</pre>                                                 |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:<br>CORPORATE SOURCE:<br>SOURCE:<br>DOCUMENT TYPE:<br>FILE SEGMENT:<br>LANGUAGE:<br>SUMMARY LANGUAGE:<br>AB Enzyme electr<br>developed usi<br>putrescine ox<br>the electroch<br>at screen-pri:<br>immobilized of<br>glutaraldehyd<br>with respect<br>electrodes us<br>amines includ<br>fish freshnes;                                                                                          | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,<br/>D-48149 Muenster, Germany<br/>SENSORS ACTUATORS B: CHEM., (1996) vol. B32, no. 2, pp.<br/>107-113.<br/>ISSN: 0925-4005.<br/>Journal<br/>Q4<br/>English<br/>English<br/>odes for the determination of biogenic amines have been<br/>ng monoamine oxidase (MAO) from Aspergillus niger and<br/>idase (PO) from Micrococcus rubens. Determination is based on<br/>emical oxidation of enzymatically produced H sub(2)O sub(2)<br/>nted platinum electrodes. The enzymes are<br/>n silanized electrodes by cross-linking with<br/>a. Compositions of the immobilization mixtures are optimized<br/>to stability, sensitivity and selectivity of the sensors. The<br/>ing MAO as the biochemical component respond to several<br/>ing histamine, an important amine in the determination of<br/>s. The PO electrodes show a significant response not only to<br/></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:<br>CORPORATE SOURCE:<br>SOURCE:<br>DOCUMENT TYPE:<br>FILE SEGMENT:<br>LANGUAGE:<br>SUMMARY LANGUAGE:<br>AB Enzyme electr<br>developed usi<br>putrescine ox<br>the electroch<br>at screen-pri:<br>immobilized of<br>glutaraldehyd<br>with respect<br>electrodes us<br>amines includ<br>fish freshness<br>putrescine and<br>electrochemica                                                      | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,<br/>D-48149 Muenster, Germany<br/>SENSORS ACTUATORS B: CHEM., (1996) vol. B32, no. 2, pp.<br/>107-113.<br/>ISSN: 0925-4005.<br/>Journal<br/>Q4<br/>English<br/>Deds for the determination of biogenic amines have been<br/>ng monoamine oxidase (MAO) from Aspergillus niger and<br/>idase (PO) from Micrococcus rubens. Determination is based on<br/>emical oxidation of enzymatically produced H sub(2)O sub(2)<br/>nted platinum electrodes. The enzymes are<br/>n silanized electrodes by cross-linking with<br/>a. Compositions of the immobilization mixtures are optimized<br/>to stability, sensitivity and selectivity of the sensors. The<br/>ing MAO as the biochemical component respond to several<br/>Ing histamine, an important amine in the determination of<br/>a. The PO electrodes show a significant response not only to<br/>A its homologue cadaverine but also to tyramine, an<br/>anlly active amine. The optimal buffer for both types of amine<br/>and active amine. The optimal buffer for both types of amine<br/>and active amine. The optimal buffer for both types of amine<br/>and active amine. The optimal buffer for both types of amine<br/>and active amine. The optimal buffer for both types of amine<br/>and active amine. The optimal buffer for both types of amine<br/>and active amine. The optimal buffer for both types of amine<br/>and active amine. The optimal buffer for both types of amine<br/>active amine. The optimal buffer for both types of amine<br/>active amine. The optimal buffer for both types of amine<br/>active amine. The optimal buffer for both types of amine<br/>active amine. The optimal buffer for both types of amine<br/>active amine. The optimal buffer for both types of amine<br/>active amine. The optimal buffer for both types of amine<br/>active amine. The optimal buffer for both types of amine<br/>active amine. Active amine and activ</pre> |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:<br>CORPORATE SOURCE:<br>SOURCE:<br>DOCUMENT TYPE:<br>FILE SEGMENT:<br>LANGUAGE:<br>SUMMARY LANGUAGE:<br>AB Enzyme electr<br>developed usi<br>putrescine ox<br>the electroch<br>at screen-pri:<br>immobilized of<br>glutaraldehyd<br>with respect<br>electrodes us<br>amines includ<br>fish freshnes;<br>putrescine and<br>electrochemica<br>oxidase elect;                                    | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,<br/>D-48149 Muenster, Germany<br/>SENSORS ACTUATORS B: CHEM., (1996) vol. B32, no. 2, pp.<br/>107-113.<br/>ISSN: 0925-4005.<br/>Journal<br/>04<br/>English<br/>English<br/>odes for the determination of biogenic amines have been<br/>ng monoamine oxidase (MAO) from Aspergillus niger and<br/>idase (PO) from Micrococcus rubens. Determination is based on<br/>emical oxidation of enzymatically produced H sub(2)O sub(2)<br/>nted platinum electrodes. The enzymes are<br/>n silanized electrodes by cross-linking with<br/>e. Compositions of the immobilization mixtures are optimized<br/>to stability, sensitivity and selectivity of the sensors. The<br/>Ing MAO as the biochemical component respond to several<br/>ing histamine, an important amine in the determination of<br/>s. The PO electrodes show a significant response not only to<br/>d its homologue cadaverine but also to tyramine, an<br/>ally active amine. The optimal buffer for both types of amine<br/>rodes is Clark and Lubs (C + L) buffer pH 8.5. Simultaneous</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:<br>CORPORATE SOURCE:<br>SOURCE:<br>DOCUMENT TYPE:<br>FILE SEGMENT:<br>LANGUAGE:<br>SUMMARY LANGUAGE:<br>AB Enzyme electr<br>developed usi<br>putrescine ox<br>the electroch<br>at screen-pri:<br>immobilized of<br>glutaraldehyd<br>with respect<br>electrodes us<br>amines includ<br>fish freshness<br>putrescine and<br>electrochemica<br>oxidase elect:<br>determination                   | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,<br/>D-48149 Muenster, Germany<br/>SENSORS ACTUATORS B: CHEM., (1996) vol. B32, no. 2, pp.<br/>107-113.<br/>ISSN: 0925-4005.<br/>Journal<br/>Q4<br/>English<br/>English<br/>Dodes for the determination of biogenic amines have been<br/>ng monoamine oxidase (MAO) from Aspergillus niger and<br/>idase (PO) from Micrococcus rubens. Determination is based on<br/>emical oxidation of enzymatically produced H sub(2)O sub(2)<br/>nted platinum electrodes. The enzymes are<br/>n silanized electrodes by cross-linking with<br/>2. Compositions of the immobilization mixtures are optimized<br/>to stability, sensitivity and selectivity of the sensors. The<br/>ing MAO as the biochemical component respond to several<br/>ing histamine, an important amine in the determination of<br/>s. The PO electrodes show a significant response not only to<br/>A its homologue cadaverine but also to tyramine, an<br/>and and the substrates of both enzymes can be accomplished by<br/>Sender Scale A and Lubs (C + L) buffer pH 8.5. Simultaneous<br/>of the substrates of both enzymes can be accomplished by</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:<br>CORPORATE SOURCE:<br>SOURCE:<br>DOCUMENT TYPE:<br>FILE SEGMENT:<br>LANGUAGE:<br>SUMMARY LANGUAGE:<br>AB Enzyme electr<br>developed usi<br>putrescine ox<br>the electroch<br>at screen-pri:<br>immobilized of<br>glutaraldehyd<br>with respect<br>electrodes us<br>amines includ<br>fish freshness<br>putrescine and<br>electrochemica<br>oxidase elect:<br>determination<br>immobilizing 1 | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,<br/>D-48149 Muenster, Germany<br/>SENSORS ACTUATORS B: CHEM., (1996) vol. B32, no. 2, pp.<br/>107-113.<br/>ISSN: 0925-4005.<br/>Journal<br/>Q4<br/>English<br/>English<br/>Dedes for the determination of biogenic amines have been<br/>ng monoamine oxidase (MAO) from Aspergillus niger and<br/>idase (PO) from Micrococcus rubens. Determination is based on<br/>emical oxidation of enzymatically produced H sub(2)O sub(2)<br/>nted platinum electrodes. The enzymes are<br/>n silanized electrodes by cross-linking with<br/>e. Compositions of the immobilization mixtures are optimized<br/>to stability, sensitivity and selectivity of the sensors. The<br/>ing MAO as the biochemical component respond to several<br/>ing histamine, an important amine in the determination of<br/>s. The PO electrodes show a significant response not only to<br/>d its homologue cadaverine but also to tyramine, an<br/>ally active amine. The optimal buffer for both types of amine<br/>rodes is Clark and Lubs (C + L) buffer pH 8.5. Simultaneous<br/>of the substrates of both enzymes can be accomplished by<br/>PO and MAO onto different working electrodes of the</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| operated at<br>L19 ANSWER 12 OF<br>ACCESSION NUMBER:<br>TITLE:<br>AUTHOR:<br>CORPORATE SOURCE:<br>SOURCE:<br>DOCUMENT TYPE:<br>FILE SEGMENT:<br>LANGUAGE:<br>SUMMARY LANGUAGE:<br>AB Enzyme electr<br>developed usi<br>putrescine ox<br>the electroch<br>at screen-pri:<br>immobilized of<br>glutaraldehyd<br>with respect<br>electrodes us<br>amines includ<br>fish freshness<br>putrescine and<br>electrochemica<br>oxidase elect:<br>determination<br>immobilizing 1 | <pre>low overpotentials, i.e. +200 mV vs. SCE.<br/>12 LIFESCI COPYRIGHT 2004 CSA on STN DUPLICATE 6<br/>97:58960 LIFESCI<br/>Development of screen-printed enzyme electrodes<br/>for the estimation of fish quality<br/>Chemnitius, G.C.; Bilitewski, U.<br/>Inst. Chem. and Biochem. Sensor Res., Mendelstrasse 7,<br/>D-48149 Muenster, Germany<br/>SENSORS ACTUATORS B: CHEM., (1996) vol. B32, no. 2, pp.<br/>107-113.<br/>ISSN: 0925-4005.<br/>Journal<br/>Q4<br/>English<br/>English<br/>Dodes for the determination of biogenic amines have been<br/>ng monoamine oxidase (MAO) from Aspergillus niger and<br/>idase (PO) from Micrococcus rubens. Determination is based on<br/>emical oxidation of enzymatically produced H sub(2)O sub(2)<br/>nted platinum electrodes. The enzymes are<br/>n silanized electrodes by cross-linking with<br/>2. Compositions of the immobilization mixtures are optimized<br/>to stability, sensitivity and selectivity of the sensors. The<br/>ing MAO as the biochemical component respond to several<br/>ing histamine, an important amine in the determination of<br/>s. The PO electrodes show a significant response not only to<br/>A its homologue cadaverine but also to tyramine, an<br/>and and the substrates of both enzymes can be accomplished by<br/>Sender Scale A and Lubs (C + L) buffer pH 8.5. Simultaneous<br/>of the substrates of both enzymes can be accomplished by</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

. E mackerel and codfish in storage. As expected, sensor signals increase with storage time of the fish, indicating the production of biogenic amines. During storage of mackerel, mainly histamine is produced, which leads to an increase in the signals obtained with the MAO electrodes. On the other hand, the putrefaction process of codfish during storage is detected mainly by the PO electrodes. All results are confirmed by comparison with HPLC data.

=> file .jacob COST IN U.S. DOLLARS

| COST IN U.S. DOLLARS | SINCE FILE | TOTAL   |
|----------------------|------------|---------|
| FULL ESTIMATED COST  | ENTRY      | SESSION |
| TOTH DOTIMATED COST  | 32.83      | 33.04   |

FILE 'CAPLUS' ENTERED AT 11:28:17 ON 30 AUG 2004 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'BIOSIS' ENTERED AT 11:28:17 ON 30 AUG 2004 Copyright (c) 2004 The Thomson Corporation.

FILE 'MEDLINE' ENTERED AT 11:28:17 ON 30 AUG 2004

FILE 'EMBASE' ENTERED AT 11:28:17 ON 30 AUG 2004 COPYRIGHT (C) 2004 Elsevier Inc. All rights reserved.

FILE 'USPATFULL' ENTERED AT 11:28:17 ON 30 AUG 2004 CA INDEXING COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

=> (lead or mercury or chromium or cadimium) and screen and (immobilized or immobilizing or immobilize or coat) L2043 FILE CAPLUS L219 FILE BIOSIS L22 12 FILE MEDLINE L23 8 FILE EMBASE L24

TOTAL FOR ALL FILES L25 31138 (LEAD OR MERCURY OR CHROMIUM OR CADIMIUM) AND SCREEN AND (IMMOBI LIZED OR IMMOBILIZING OR IMMOBILIZE OR COAT)

=> dup rem ENTER L# LIST OR (END):120-23 PROCESSING COMPLETED FOR L20 PROCESSING COMPLETED FOR L21 PROCESSING COMPLETED FOR L22 PROCESSING COMPLETED FOR L23 L26 48 DUP REM L20-23 (24 DUPLICATES REMOVED)

=> 126 and py<2001 L2743 S L26 L28 30 FILE CAPLUS L29 2 S L26 1 FILE BIOSIS L30 L31 2 S L26 L32 1 FILE MEDLINE L33 1 S L26 L341 FILE EMBASE L35 0 S L26 L36 0 FILE USPATFULL

31066 FILE USPATFULL

TOTAL FOR ALL FILES L37 33 L26 AND PY<2001 L37 ANSWER 1 OF 33 CAPLUS COPYRIGHT 2004 ACS on STN ACCESSION NUMBER: 2000:375085 CAPLUS TITLE: The color cathode ray tube which possesses built-in resolution resistance. [Machine Translation]. INVENTOR(S): Ota. Kazuki; Hayashi, Kazuo PATENT ASSIGNEE(S): Matsushita Electronics Corp., Japan; Nippon Hydrogene Kogyo K. K. SOURCE: Jpn. Kokai Tokkyo Koho, 8 pp. CODEN: JKXXAF DOCUMENT TYPE: Patent LANGUAGE : Japanese FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION: PATENT NO. KIND DATE APPLICATION NO. DATE --------------

=> d 137 ibib abs total

JP 2000156176 A2 20000606 JP 1998-328213 19981118 <--JP 3527112 B2 20040517 PRIORITY APPLN. INFO.: JP 1998-328213 19981118

JP 1998-328213 19981118 AB [Machine Translation of Descriptors]. The trimming which adjusts the resistance resolution ratio of the built-in resolution resistance to which the television and display et cetera are used for the color cathode ray tube improves, administers sparking treatment and it makes the built-in resolution resistance to which resistance resolution ratio does not fluctuate, offers the color cathode ray tube which can obtain high resolution in all of the fluorescent material screen surface. Excluding the 1st electric insulation coat layer (4) which the covering is done and that vicinity which includes the electrode section excluding the vicinity which in the pattern of the zigzag condition which includes the ruthenium acid lead on the electric insulation baseplate (1) of the ceramics make and this electric insulation baseplate (1) possesses the electrode section (3 a-d) in the trimming section, and the place home position of the baseplate which to the resistor layer (2) and this resistor layer (2) which the formation are done connected formed at the same time includes the electrode section on the 1st electric insulation coat layer the covering are done the 2nd electric insulation coat layer (5), and the back of the baseplate which It makes the built-in resolution resistance which includes the 3rd electric insulation coat layer (6).

L37 ANSWER 2 OF 33 CAPLUS COPYRIGHT 2004 ACS on STN ACCESSION NUMBER: 2000:241677 CAPLUS DOCUMENT NUMBER: 132:259375 TITLE: Capacitance-coupled high dielectric constant embedded capacitors INVENTOR(S): Liberatore, Michael James; Sreeram, Attiganal Narayanaswamy; Prabhu, Ashok Narayan; Kim, In-tae; Mun, Je-do; Park, Sung-dae; Park, Yun-hwi; Yu, Joo-dong; Tormey, Ellen S. PATENT ASSIGNEE(S): Sarnoff Corporation, USA; Daewoo Electronics Co., Ltd. SOURCE : PCT Int. Appl., 16 pp. CODEN: PIXXD2 DOCUMENT TYPE: Patent LANGUAGE : English FAMILY ACC. NUM. COUNT: 3 PATENT INFORMATION: PATENT NO. KIND DATE APPLICATION NO. DATE

| WO 2000021102<br>W: CA, MX | A1 | 20000413 | WO 1999-US22890 | 19991001 < |
|----------------------------|----|----------|-----------------|------------|

RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE CA 2345764 AA 20000413 CA 1999-2345764 19991001 <--CA 2346041 AA 20000413 CA 1999-2346041 19991001 <--WO 2000021101 20000413 A2 WO 1999-US23208 19991001 <--WO 2000021101 A3 20000727 W: CA, MX RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE KR 2000028775 Α 20000525 KR 1999-42260 19991001 <--KR 2000052335 20000825 А KR 1999-42261 19991001 <--EP 1118076 A2 EP 1999-950196 20010725 19991001 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI EP 1135783 Ά1 20010926 EP 1999-953023 19991001 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI PRIORITY APPLN. INFO .: US 1998-102773P P 19981002 WO 1999-US22890 W 19991001 WO 1999-US23208 W 19991001 High dielec. constant capacitors are made from a dielec. ink (30, 32, 34) of AB Pb-Mg-niobate and lead oxide powders with a suitable organic vehicle which can be used to coat one or more glass-based green tapes. Buried capacitors are made by coating an overlying and an underlying green tape with a conductor (36, 38, 40, 42) such as Ag. Capacitors can also be made by adjusting the organic vehicle and forming a green tape from the dielec. powders. These dielec. green tapes each can be coated with a conductive layer and stacked, the conductive layers connected in parallel. The resultant multilayer capacitors have a very high dielec. constant, while eliminating the need for very large area capacitors, as compared to single layer capacitors. REFERENCE COUNT: THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS 7 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT L37 ANSWER 3 OF 33 CAPLUS COPYRIGHT 2004 ACS on STN 2000:188672 CAPLUS ACCESSION NUMBER: DOCUMENT NUMBER: 133:2095 A Disposable Amperometric Sensor Screen TITLE: Printed on a Nitrocellulose Strip: A Glucose Biosensor Employing Lead Oxide as an Interference-Removing Agent AUTHOR(S): Cui, Gang; Kim, Sang Jin; Choi, Sung Hyuk; Nam, Hakhyun; Cha, Geun Sig; Paeng, Ki-Jung CORPORATE SOURCE: Chemical Sensor Research Group Department of Chemistry, Kwangwoon University, Nowon-Ku Seoul, 139-701, S. Korea SOURCE: Analytical Chemistry (2000), 72(8), 1925-1929 CODEN: ANCHAM; ISSN: 0003-2700 PUBLISHER: American Chemical Society DOCUMENT TYPE: Journal LANGUAGE: English A new type of disposable amperometric sensor is devised by screen AB printing thick-film electrodes directly on a porous nitrocellulose (NC) strip. The chromatog. NC strip is then utilized to introduce various sample pretreatment layers. As a preliminary application, a glucose biosensor based on hydrogen peroxide detection is constructed by immobilizing glucose oxidase (GOx) on the NC electrode strip and by formulating a strong oxidation layer (i.e., PbO2) at the sample loading area, placed below the GOx reaction band. The screen-printed PbO2 paste serves as a sample pretreatment layer that removes interference by its strong oxidizing ability. Samples applied are carried chromatog., via the PbO2 paste, to the GOx layer, and glucose is catalyzed to liberate hydrogen peroxide, which is then detected at the electrode surface. The

proposed NC/Pb02 strip sensor is shown to be virtually insusceptible to interfering species such as acetaminophen and ascorbic and uric acids and to exhibit good performance, in terms of the sensor-to-sensor reproducibility (standard deviation,  $\pm 0.026 \ \pm 0.086 \ \mu A)$  , the sensitivity (slope, -0.183  $\mu$ A/mM), and the linearity (correlation coefficient, 0.994 in the range of 0-10 mM). REFERENCE COUNT: THERE ARE 24 CITED REFERENCES AVAILABLE FOR THIS 24 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT L37 ANSWER 4 OF 33 CAPLUS COPYRIGHT 2004 ACS on STN ACCESSION NUMBER: 2000:47952 CAPLUS DOCUMENT NUMBER: 132:273745 TITLE: Biosensor Analysis of Drug-Target Interactions: Direct and Competitive Binding Assays for Investigation of Interactions between Thrombin and Thrombin Inhibitors AUTHOR (S): Karlsson, Robert; Kullman-Magnusson, Mari; Hamalainen, Markku D.; Remaeus, Annika; Andersson, Karl; Borg, Peter; Gyzander, Erika; Deinum, Johanna CORPORATE SOURCE: Biacore AB, Uppsala, SE-754 50, Swed. SOURCE: Analytical Biochemistry (2000), 278(1), 1-13 CODEN: ANBCA2; ISSN: 0003-2697 PUBLISHER: Academic Press DOCUMENT TYPE: Journal LANGUAGE: English The sensitivity of BIACORE technol. is sufficient for detection and AB characterization of binding events involving low-mol.-weight compds. and their immobilized protein targets. The technol. requires no labeling and provides information on the stability of the compound/target complex with a single injection of the compound This is useful for qualifying hits obtained in a primary screen and in lead optimization. Although immobilized targets can be reused, the surface may slowly deteriorate, solvent effects can distort binding levels during injection of compds., and some compds. may exhibit broad protein selectivity rather than target specificity. A reliable direct binding assay for compds. binding to immobilized thrombin using a combination of two reference surfaces, a dextran surface for subtraction and calibration of solvent effects and a protein surface for identification of compds. that tend to bind proteins, has been developed. Eleven compds. with known binding specificity to thrombin and 159 addnl. compds. were investigated. All compds. with known binding specificity were identified at 1 and 10 µM concentration One addnl. compound was scored as pos. The direct binding assay compared favorably with two competitive assay formats, a surface competitive assay and a inhibitor in solution assay, that were examined in parallel. (c) 2000 Academic Press. REFERENCE COUNT: THERE ARE 15 CITED REFERENCES AVAILABLE FOR THIS 15 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT L37 ANSWER 5 OF 33 CAPLUS COPYRIGHT 2004 ACS on STN ACCESSION NUMBER: 1999:563063 CAPLUS DOCUMENT NUMBER: 131:302350 TITLE: The effect of the solvent on the cross-link density of SiO2 coatings AUTHOR(S): Mutter, C.; Bernards, T. N. M.; Peeters, M. P. J.; Lammers, J. H.; Bohmer, M. R. CORPORATE SOURCE: Department of Inorganic Materials and Processing, Philips Research Laboratories Eindhoven, Eindhoven, 5656 AA, Neth. SOURCE: Thin Solid Films (1999), 351(1,2), 95-98 CODEN: THSFAP; ISSN: 0040-6090 PUBLISHER: Elsevier Science S.A. DOCUMENT TYPE: Journal LANGUAGE : English AB With increasing screen size of television and computer monitor

tubes the spin-coating of tetraethylorthosilicate (TEOS) based sol-gel coatings becomes an increasingly difficult task. To retain sufficient uniformity and scratch resistance of the coatings, changes in the composition of the coating liqs. and the coating procedures are needed. Changing solvents and adding catalysts can lead to increased cross-link d. which has been measured by 29Si-NMR. The cross-link d. increases with increasing average number of hydroxy groups on the Si atoms in the drying phase, which can be tailored by adjusting the water concentration, by using water vapor or by using solvents which do not cause the re-esterification of alkoxy groups on the Si atoms during drying. REFERENCE COUNT: 10 THERE ARE 10 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT L37 ANSWER 6 OF 33 CAPLUS COPYRIGHT 2004 ACS on STN ACCESSION NUMBER: 1998:802926 CAPLUS DOCUMENT NUMBER: 130:165114 TITLE: Evolution of peptides that modulate the spectral qualities of bound, small-molecule fluorophores AUTHOR(S): Rozinov, Michael N.; Nolan, Garry P. CORPORATE SOURCE: Department of Molecular Pharmacology, Stanford University Medical Center, Stanford, CA, 94305-5332, USA SOURCE: Chemistry & Biology (1998), 5(12), 713-728 CODEN: CBOLE2; ISSN: 1074-5521 PUBLISHER: Current Biology Publications DOCUMENT TYPE: Journal LANGUAGE: English Fluorophore dyes are used extensively in biomedical research to AB sensitively assay cellular constituents and physiol. We have created, as proof of principle, fluorophore dye binding peptides that could have applications in fluorescent dye-based approaches in vitro and in vivo. A panel of Texas red, Rhodamine red, Oregon green 514 and fluorescein binding peptides, termed here "fluorettes", was selected via biopanning of a combinatorial library of 12-mer peptides fused to a minor coat pIII protein of the filamentous bacteriophage M13. The "best" fluorette sequences from each of the groups were subjected to further mutagenesis, followed by a second biopanning to select a new generation of improved fluorettes. Phage were selected that had higher avidity for each fluorophore except Rhodamine red. Of these, peptides were characterized that could specifically and with high affinity bind at least one dye, Texas red, in solution In addition, the binding of certain peptides to Texas red shifted the peak excitation and/or the emission spectra of the bound dye. Peptides in the context of phage display could readily be selected that could bind to small-mol. fluorophores. The affinities of selected mutant fluorettes could be increased by mutation and further selection. Only a subset of the free peptides could bind free dyes in solution, suggesting that phage context contributed to the selection and ability of certain peptidic regions to independently bind the dyes. Future screens might lead to the creation of other dye-binding peptides with novel characteristics or Texas red derivs. with crosslinking substituents might be designed to increase the utility of the system. **REFERENCE COUNT:** 35 THERE ARE 35 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT L37 ANSWER 7 OF 33 CAPLUS COPYRIGHT 2004 ACS on STN ACCESSION NUMBER: 1998:308207 CAPLUS DOCUMENT NUMBER: 129:89604 TITLE: Enzyme inhibition based detection of heavy metals using H2O2 electrochemical probes AUTHOR (S): Compagnone, D.; Palleschi, G.; Imperiali, P.; Varallo, G.

CORPORATE SOURCE: Dipartimento di Scienze e Tecnologie Chimiche,

University of Rome Tor Vergata, Rome, 00133, Italy SOURCE: Artificial and Natural Perception, Proceedings of the Italian Conference on Sensors and Microsystems, 2nd, Rome, Feb. 3-5, 1997 (1997), 74-78. Editor(s): Di Natale, Corrado; D'Amico, Arnaldo; Davide, Fabrizio A. M. World Scientific: Singapore, Singapore. CODEN: 66BBAO DOCUMENT TYPE: Conference LANGUAGE: English AB A method for the determination of heavy metals using oxidase enzymes and conventional Pt based or disposable Ru/graphite screen-printed H202 probes was developed. The inhibition effect on the enzymic activity was related to the concentration of the metal in solution Among the oxidase enzymes tested, glycerol-3-P oxidase, sarcosine oxidase and alc. oxidase from Pichia Pastoris proved to be the most promising. Determination of metal ions such as Hg(II), V(V), Cu(II), Se(IV) and Ni(II) in the low ppm range was achieved using the enzymes in solution and covalently immobilized enzymes. REFERENCE COUNT: 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT L37 ANSWER 8 OF 33 CAPLUS COPYRIGHT 2004 ACS on STN ACCESSION NUMBER: 1998:115826 CAPLUS DOCUMENT NUMBER: 128:208037 TITLE: Transferring sheets having mono- or multiple colors for ceramic articles INVENTOR(S): Sugimoto, Makoto; Ito, Hiroto PATENT ASSIGNEE(S): NGK Spark Plug Co., Ltd., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 5 pp. CODEN: JKXXAF DOCUMENT TYPE: Patent LANGUAGE : Japanese FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION: PATENT NO. KIND DATE APPLICATION NO. DATE ----------------\_\_\_\_\_ JP 10044583 A2 19980217 JP 1996-200240 19960730 <--PRIORITY APPLN. INFO.: JP 1996-200240 19960730 The transferring sheets are obtained by **screen**-printing cover AB coat ink containing glass powder and a thermoplastic resin on a paper or resin film, drying the cover coat ink, screen -printing within the area of the cover coat ink with an ink containing desired pigments, glass powder, and a thermoplastic resin, and drying. L37 ANSWER 9 OF 33 CAPLUS COPYRIGHT 2004 ACS on STN ACCESSION NUMBER: 1998:66273 CAPLUS DOCUMENT NUMBER: 128:164697 TITLE: Biosensor using carbon-silver mixture as lead for electrodes INVENTOR(S): Goto, Masao; Mure, Hiroki PATENT ASSIGNEE(S): NOK Corp., Japan SOURCE : Jpn. Kokai Tokkyo Koho, 3 pp. CODEN: JKXXAF DOCUMENT TYPE: Patent LANGUAGE : Japanese FAMILY ACC. NUM, COUNT: 1 PATENT INFORMATION: PATENT NO. KIND DATE APPLICATION NO. DATE

| JP 10019834<br>JP 3510049 | B2 20040322                                   | JP 1996-188439              | 19960628 <            |
|---------------------------|-----------------------------------------------|-----------------------------|-----------------------|
| PRIORITY APPLN. INFO.:    |                                               | JP 1996-188439              | 19960628              |
| AB The biosensor com      | prises an insulating                          | substrate, and an ox        | idoreductase          |
| immobilized C wor         | king electrode and a                          | C counter electrode         | thereon,              |
| and a <b>lead</b> of one  | or both of the elect                          | rodes is made of C-A        | /d                    |
| mixture Use of C          | -Ag mixture as the ma                         | aterial for the <b>lead</b> | prevents              |
| time-dependent di         | scoloration and reduc                         | ces variation coeffic       | zient in measurement. |
|                           | de, a counter electro                         |                             |                       |
| counter electrode         | were formed on a PET                          | film using C by scr         | reen                  |
| printing, and a $1$       | ead of the working el                         | lectrode was formed u       | lsing                 |
| C-Ag equimolar mi         | xture Subsequently a                          | a phosphate buffer so       | olution containing    |
| glucose                   |                                               |                             | 5                     |
| oxidase and K3Fe(         | CN)6 was poured onto                          | the working electrod        | le to give a          |
| glucose sensor. '         | The sensor was let st                         | and at room temperat        | ure for 30 days to    |
| show no discolora         | tion, while a control                         | sensor using Ag as          | a material for        |
| lead showed color         | change from silver t                          | o light brown.              |                       |
|                           |                                               |                             |                       |
| L37 ANSWER 10 OF 33       | CAPLUS COPYRIGHT 200                          | 4 ACS on STN                |                       |
|                           | . 1997:702336 CAPLU                           | JS                          |                       |
| DOCUMENT NUMBER:          | 127:305011                                    |                             |                       |
| TITLE:                    | Biochemical Detect                            | ion for Direct Bead         | Surface Analysis      |
| AUTHOR (S) :              | Lutz, E. S. M.; Ir                            | th, H.; Tjaden, U. R        | .; van der            |
|                           | Greef, J.                                     |                             |                       |
| CORPORATE SOURCE:         | Division of Analyt                            | ical Chemistry Leide        | n/Amsterdam           |
|                           | Center for Drug Re                            | esearch, Leiden Unive       | rsity, Leiden,        |
|                           | 2300 RA, Neth.                                |                             |                       |
| SOURCE:                   |                                               | ry ( <b>1997</b> ), 69(23), |                       |
|                           | 4878-4884                                     |                             |                       |
| ·                         | CODEN: ANCHAM; ISS                            |                             |                       |
| PUBLISHER:                | American Chemical                             | Society                     |                       |
| DOCUMENT TYPE:            | Journal                                       |                             |                       |
| LANGUAGE :                | English                                       |                             |                       |
| AB A continuous-flow      | biochem. detection s                          | ystem is presented w        | hich recognizes       |
|                           | ls. immobilized to so                         |                             |                       |
|                           | ceen, for example, so                         |                             |                       |
| mining a plug of          | compds. Biochem. d                            | letection is performe       | d by                  |
| During a plug of a        | a solid-phase suspens                         | ion with labeled aff        | inity protein.        |
| to liganda i o            | action time, the labe                         | led affinity protein        | will only bind        |
| bound labels are s        | compds. with biol. a separated by means of    | ctivity. Hereafter,         | the free and          |
| the free label is         | performed with a gen                          | a nollow fiber modu         | le. Quantitation of   |
| detector Total a          | performed with a con<br>assay time amts. to l | ong than 2 min Die          | gn fluorescence       |
| for direct head su        | irface anal. was deve                         | loped for two model         | chem. detection       |
| first model system        | used fluorescence-1                           | abelod avidin an aff        | systems. The          |
| and its ligands bi        | otin and iminobiotin                          | immobilized to agar         |                       |
| analytes. The sec         | cond model system use                         | d fluorescence-label        | ed anticheen          |
| (Fab)2 fragments a        | as affinity protein a                         | nd different Taga           | ed ancisneep          |
| immobilized to aga        | arose as analytes. T                          | he feasibility of th        | ie                    |
| approach for reco         | nition of solid-phas                          | e immobilized ligand        | a maa                 |
| documented by scre        | ening 50 samples wit                          | h a $100$ % hit rate.       |                       |
| -                         | 5 1 14 425                                    |                             |                       |
| L37 ANSWER 11 OF 33 C     | APLUS COPYRIGHT 200                           | 4 ACS on STN                |                       |
| ACCESSION NUMBER:         | 1997:610891 CAPLU                             |                             |                       |
| DOCUMENT NUMBER:          | 127:212290                                    |                             |                       |
| TITLE:                    | Electroluminescent                            | lighting element wi         | th a                  |
|                           | light-permeable re                            | flection layer and m        | anufacturing          |
|                           | method for the sam                            |                             | <u>د</u> .            |
| INVENTOR (S) :            |                                               | ahisa, Yosuke; Tanab        | e, Koji               |
| PATENT ASSIGNEE(S):       | Matsushita Electri                            | c Industrial Co., Lt        | d., Japan             |
| SOURCE :                  | Eur. Pat. Appl., 8                            | pp.                         | · •                   |
|                           | CODEN: EPXXDW                                 |                             |                       |
| DOCUMENT TYPE:            | Patent                                        |                             |                       |
|                           |                                               |                             |                       |
|                           |                                               |                             |                       |

.

LANGUAGE: English FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION:

| PATENT NO.             | KIND | DATE     | APPLICATION NO. | DATE       |
|------------------------|------|----------|-----------------|------------|
|                        |      |          |                 |            |
| EP 794689              | A1   | 19970910 | EP 1997-301366  | 19970228 < |
| EP 794689              | B1   | 20010627 |                 |            |
| R: DE, FR, GB          |      |          |                 |            |
| JP 09245966            | A2   | 19970919 | JP 1996-45751   | 19960304 < |
| US 5841230             | А    | 19981124 | US 1997-804963  | 19970224 < |
| HK 1001654             | A1   | 20010928 | HK 1998-100567  | 19980122   |
| PRIORITY APPLN. INFO.: |      |          | JP 1996-45751 A | 19960304   |

AB Electroluminescent lighting elements are described which are fabricated by forming, on an upper surface of an insulating transparent film, a transparent electrode layer, a phosphor layer, a dielec. layer, a back-surface electrode, collecting electrode layers, and an insulating **coat** layer successively in predetd. patterns by repeating **screen** printing operations and applying a light-transmitting reflecting layer (e.g., a layer comprising a pearlescent pigment in a transparent binder) on a lower surface of the insulating transparent film in a predetd. pattern by a printing operation. This reflecting layer allows the elimination of color differences in the light-emitting surface of the lighting elements between turned-on and turned-off conditions, as reflected light produces a surface that appears white when the elements are off while the light emitted by the device gives the devices' surfaces a white color when they are on. The devices are also claimed.

| L37 ANSWER 12 OF 33 | CAPLUS COPYRIGHT 2004 ACS on STN                       |
|---------------------|--------------------------------------------------------|
| ACCESSION NUMBER:   | 1996:633448 CAPLUS                                     |
| DOCUMENT NUMBER:    | 125:326786                                             |
| TITLE:              | Development of screen-printed enzyme                   |
|                     | electrodes for the estimation of fish quality          |
| AUTHOR(S):          | Chemnitius, G. C.; Bilitewski, U.                      |
| CORPORATE SOURCE:   | Department of Enzymology, Gesellschaft fuer            |
|                     | Biotechnologische Forschung mbH (GBF), Mascheroder Weg |
|                     | 1, Braunschweig, 38124, Germany                        |
| SOURCE:             | Sensors and Actuators, B: Chemical (1996),             |
|                     | B32(2), 107-113                                        |
|                     | CODEN: SABCEB; ISSN: 0925-4005                         |
| PUBLISHER:          | Elsevier                                               |
| DOCUMENT TYPE:      | Journal                                                |
| LANGUAGE :          | English                                                |
|                     |                                                        |

AB Enzyme electrodes for the determination of biogenic amines have been developed using monoamine oxidase (MAO) from Aspergillus niger and putrescine oxidase (PO) from Micrococcus rubens. Determination is based on the electrochem.

oxidation of enzymically produced H2O2 at **screen**-printed platinum electrodes. The enzymes are **immobilized** on silanized electrodes by crosslinking with glutaraldehyde. Compns. of the immobilization mixts. are optimized with respect to stability, sensitivity and selectivity of the sensors. The electrodes using MAO as the biochem. component respond to several amines including histamine, an important amine in the determination

of

fish freshness. The PO electrodes show a significant response not only to putrescine and its homolog cadaverine but also to tyramine, an electrochem. active amine. The optimal buffer for both types of amine oxidase electrodes is Clark and Lubs (C+L) buffer pH 8.5. Simultaneous determination of the substrates of both enzymes can be accomplished by **immobilizing** PO and MAO onto different working electrodes of the same sensor. The sensors have been used to monitor the freshness of mackerel and codfish in storage. As expected, sensor signals increase with storage time of the fish, indicating the production of biogenic amines. During storage of mackerel, mainly histamine is produced, which **leads** to an increase in the signals obtained with the MAO electrodes. On the other hand, the putrefaction process of codfish during storage is detected mainly by the PO electrodes. All results are confirmed by comparison with HPLC data.

| L37 ANSWER 13 OF 33 CA  | APLUS COPYRIGHT 2004 ACS on STN                                                                                    |
|-------------------------|--------------------------------------------------------------------------------------------------------------------|
| ACCESSION NUMBER:       | 1995:591385 CAPLUS                                                                                                 |
| DOCUMENT NUMBER:        | 122:328245                                                                                                         |
| TITLE:                  | Pastes for the production of conductors, resistors,<br>capacitors, or solders, their manufacture, and their<br>use |
| INVENTOR (S) :          | Krismer, Bruno; Thies, Uwe; Ladstaetter, Peter;<br>Huenert, Rudolf                                                 |
| PATENT ASSIGNEE(S):     | H.C. Starck GmbH. und Co. KG, Germany                                                                              |
| SOURCE :                | Eur. Pat. Appl., 5 pp.                                                                                             |
|                         | CODEN: EPXXDW                                                                                                      |
| DOCUMENT TYPE:          | Patent                                                                                                             |
| LANGUAGE:               | German                                                                                                             |
| FAMILY ACC. NUM. COUNT: | 1                                                                                                                  |
| PATENT INFORMATION:     |                                                                                                                    |

| PATENT NO.      | KI         |          | E APE    | LICATION NO. |    | DATE     |   |
|-----------------|------------|----------|----------|--------------|----|----------|---|
| EP 643396       | A          |          | 50315 EP | 1994-114169  | -  | 19940909 | < |
| EP 643396       | A          | 3 199    | 50628    |              |    |          |   |
| EP 643396       | В          | 1 199    | 81230    |              |    |          |   |
| R: BE,          | DE, FR, GB | , IE, IT | , NL     |              |    |          |   |
| DE 4431723      | A          | 1 199    | 50323 DE | 1994-4431723 |    | 19940906 | < |
| DE 4431723      | C          | 2 199    | 70410    |              |    |          |   |
| JP 07188602     | А          | 2 199    | 50725 JP | 1994-239649  |    | 19940908 | < |
| FI 9404171      | A          | 199      | 50314 FI | 1994-4171    |    | 19940909 | < |
| IL 110904       | A          | 1 199:   | 90714 IL | 1994-110904  |    | 19940909 | < |
| RU 2144551      | C          | 1 200    | 00120 RU | 1994-32793   |    | 19940909 | < |
| ZA 9406993      | A          | 199      | 50508 ZA | 1994-6993    |    | 19940912 | < |
| CN 1102424      | A          | 199      | 50510 CN | 1994-115882  |    | 19940913 | < |
| CN 1052027      | В          | 200      | 00503    |              |    |          |   |
| US 5723535      | A          | 1998     | 80303 US | 1996-733468  |    | 19961016 | < |
| PRIORITY APPLN. | INFO.:     |          | DE       | 1993-4331006 | А  | 19930913 |   |
|                 |            |          | DE       | 1994-4431723 | А  | 19940906 |   |
|                 |            |          | US       | 1994-297656  | В1 | 19940829 |   |
|                 |            |          | US       | 1996-624207  | Β1 | 19960403 |   |
|                 |            |          | -        |              |    |          |   |

AB The pastes contain powdered refractory, noble, or transition metals, refractory metal oxides, oxide compds., silicides, or titanates as aqueous suspensions containing water-dilutable nonionogenic rheol. additives in amts. of 0.2-20 weight%, based on the solids content, and are free of binders and organic solvents. They are prepared by dispersing the powdered material in H2O and mixing with an associative thickener. They are used to **coat** substrates by various methods and are patterned by means of **screen** printing or lithog.

| L37 ANSWER 14 OF 33  | CAPLUS COPYRIGHT 2004 ACS on STN                      |
|----------------------|-------------------------------------------------------|
| ACCESSION NUMBER:    | 1992:241619 CAPLUS                                    |
| DOCUMENT NUMBER:     | 116:241619                                            |
| TITLE:               | A new screening procedure for the estimation of       |
|                      | oxidizable organic compounds in water samples         |
| AUTHOR (S) :         | Ruchti, B.; Schramm, C.; Kubitschko, S.; Neidhart, B. |
| CORPORATE SOURCE:    | Fachbereich Chem., Philipps-Univ., Marburg, W-3550,   |
|                      | Germany                                               |
| SOURCE:              | Fresenius' Journal of Analytical Chemistry (          |
|                      | <b>1992</b> ), 342(10), 822-6                         |
|                      | CODEN: FJACES; ISSN: 0937-0633                        |
| DOCUMENT TYPE:       | Journal                                               |
| LANGUAGE:            | English                                               |
| AB Immobilized PbO2, | supported on SiO2, was used as packing                |

material in a solid phase reactor for oxidation of organic compds. in water samples for flow injection anal. (FIA). Online oxidation in FIA allows detection of mobilized Pb2+ either photometrically, after complex formation with 4-(2-pyridylazo)-resorcinol (I) or directly with flame atomic absorption spectrometry (AAS). The oxidation yield is different for a variety of organic compds.; however, calibration was possible in all cases investigated. The system can be used to **screen** polluted waters and as a post-column chemical-reaction detector (e.g., after HPLC-separation of organic compds.). After modification, the FIA determination of COD equivalent

values

\_ \_ \_

should be possible.

PATENT NO.

| L37 ANSWER 15 OF 33    | CAPLUS COPYRIGHT 2004 ACS on STN                      |
|------------------------|-------------------------------------------------------|
| ACCESSION NUMBER:      | 1992:216327 CAPLUS                                    |
| DOCUMENT NUMBER:       | 116:216327                                            |
| TITLE:                 | Polyester monofilaments and their use in paper-making |
|                        | screens                                               |
| INVENTOR (S):          | Higuchi, Michinori; Mitsuyoshi, Takehiko; Iwamoto,    |
| ,                      | Takashi                                               |
| PATENT ASSIGNEE(S):    | Toray Industries, Inc., Japan                         |
| SOURCE :               | Jpn. Kokai Tokkyo Koho, 8 pp.                         |
|                        | CODEN: JKXXAF                                         |
| DOCUMENT TYPE:         | Patent                                                |
| LANGUAGE:              | Japanese                                              |
| FAMILY ACC. NUM. COUNT | -                                                     |
| PATENT INFORMATION:    | • 1                                                   |
| TAIDNI INFORMATION:    |                                                       |
|                        |                                                       |

| PATENT NO.                            | KIND   | DATE       | APPLICATION NO. | DATE       |
|---------------------------------------|--------|------------|-----------------|------------|
|                                       |        |            |                 |            |
| JP 03294577<br>PRIORITY APPLN. INFO.: | A2     | 19911225   | JP 1990-97307   | 19900411 < |
| OTHER SOURCE(S):                      | MARPAT | 116:216327 | JP 1990-97307   | 19900411   |

AB Title monofilaments, flexible with good abrasion resistance, are coated 0.5-20-µm-thick with products obtained by curing the hydrolyzates of (R1O)nSi[(R2)3-n]R3X (R1 = alkyl, alkoxyalkyl, R2 = C1-6 alkyl, aryl; R3 = C1-10 alkylene, alkylene oxide, polyoxyalkylene; X = epoxy-containing functional group; n = 1-3) with compds. of Fe, Cr, Al, Co and/or Ti via an adhesive layer. Thus, PET monofilaments were dipped in an adhesive emulsion containing Me methacrylate-styrene copolymers and hexamethylolmelamine tri-Me ether, dried at 150°, dipped in a solution containing  $\gamma$ -glycidoxypropyltrimethoxysilane hydrolyzates and Al acetylacetonate, and cured at 160° to form a 3.0 µm-thick coat. The filaments showed abrasion resistance (as time until breakage when placed in contact with a rotating ceramic cylinder under load) 50 min and no whitening when bent around a curvature with 5 mm radius vs. 21 and no whitening, resp., for a control coated with methyltrimethoxysilane hydrolyzates.

| L37 ANSWER 16 OF 33    | CAPLUS COPYRIGHT 2004 ACS on STN                       |
|------------------------|--------------------------------------------------------|
| ACCESSION NUMBER:      | 1988:134999 CAPLUS                                     |
| DOCUMENT NUMBER:       | 108:134999                                             |
| TITLE:                 | Fuel-cell electrodes and their manufacture             |
| INVENTOR (S) :         | Kahara, Toshiki; Okada, Hideo; Iwase, Yoshio; Mitsugi, |
|                        | Koichi; Takeuchi, Masahito; Tamura, Koki; Jinbo,       |
|                        | Ryutaro                                                |
| PATENT ASSIGNEE(S):    | Hitachi, Ltd., Japan                                   |
| SOURCE :               | Jpn. Kokai Tokkyo Koho, 5 pp.                          |
|                        | CODEN: JKXXAF                                          |
| DOCUMENT TYPE:         | Patent                                                 |
| LANGUAGE:              | Japanese                                               |
| FAMILY ACC. NUM. COUNT | : 1                                                    |
| PATENT INFORMATION:    |                                                        |
|                        |                                                        |

KIND

DATE

APPLICATION NO.

DATE

| JP | 62295355 | A2 | 19871222 | JP 1986-135922 | 19860613 < |
|----|----------|----|----------|----------------|------------|
| JP | 05050819 | B4 | 19930730 |                |            |

PRIORITY APPLN. INFO.: JP 1986-135922 19860613 AB Porous, elec. conductive ceramic substrates are coated at least on their surface with an electrochem. active material to form fuel-cell electrodes. The ceramic is a compound containing N, B, Si, and/or C; and the electrochem. active material is Pt, Pd, and/or Fe, Cr, Co, Ni, Aq, and/or Cu and/or their oxides. Thus, 100 g 2-µ Cr2N powder was immersed in 1 L aqueous solution containing Ni chloride 50, Na citrate 200, and Na hypophosphite 50 g, and adjusted to pH 10 with NaOH to coat the powder with Ni. The coated powder was washed, dried at 100°, made into a paste, applied to a 20-mesh stainless steel screen, dried at 100°, and sintered at 800° in N for 15 min to obtain a molten-carbonate fuel-cell anode. A cathode was prepared similarly except for sintering at 800° in air for 1 h to oxidize the Ni coating. When operated at 650° and 150 mA/cm2, a molten-carbonate fuel cell using these electrodes had a stable output voltage for >3500 h whereas that of a control cell dropped significantly after 1000 h.

| L37 ANSWER 17 OF 33 C   | CAPLUS COPYRIGHT 2004 ACS on STN       |
|-------------------------|----------------------------------------|
| ACCESSION NUMBER:       | 1984:547301 CAPLUS                     |
| DOCUMENT NUMBER:        | 101:147301                             |
| TITLE:                  | Biosensor.                             |
| PATENT ASSIGNEE(S):     | Matsushita Electric Works, Ltd., Japan |
| SOURCE:                 | Jpn. Kokai Tokkyo Koho, 6 pp.          |
|                         | CODEN: JKXXAF                          |
| DOCUMENT TYPE:          | Patent                                 |
| LANGUAGE :              | Japanese                               |
| FAMILY ACC. NUM. COUNT: | : 1                                    |
| PATENT INFORMATION:     |                                        |
|                         |                                        |

| PATENT NO.  | KIND | DATE     | APPLICATION NO. | DATE       |
|-------------|------|----------|-----------------|------------|
|             |      |          | <b>~~~~</b>     |            |
| JP 59128443 | A2   | 19840724 | JP 1983-4385    | 19830114 < |

PRIORITY APPLN. INFO.: JP 1983-4385 19830114
AB An enzyme immobilized biosensor is described which consists of enzyme immobilized Pt screen, coil, or plate with small pores and paired electrodes. Thus, glucose oxidase was immobilized on a Pt screen (5 + 5 mm) by silane coupling and glutaraldehyde. The paired electrodes also had a Pt screen and both electrodes were attached to lead wires in glass tubing. The distance between the electrodes is 1 mm. For glucose determination a drop of phosphate buffer (pH 7.5) was placed between

the

electrodes which hold 20  $\mu$ L of buffer, and +0.7 V of elec. potential was applied to the enzyme electrode. Then, 5  $\mu$ L of glucose solution was added to the buffer and the elec. current was measured. The concentration of glucose and the current were linearly related and it was more sensitive than the batch-type or the flow-type determination system with conventional

## enzyme

electrodes. The sucrose was also determined by using invertase and glucose oxidase on the enzyme electrode.

| CAPLUS COPYRIGHT 2004 ACS on STN         |
|------------------------------------------|
| 1977:125966 CAPLUS                       |
| 86:125966                                |
| <b>Lead</b> -free glaze                  |
| Moritsu, Yukikazu; Yamada, Koji          |
| Okuno Chemical Industry Co., Ltd., Japan |
| Jpn. Kokai Tokkyo Koho, 11 pp.           |
| CODEN: JKXXAF                            |
| Patent                                   |
| Japanese                                 |
|                                          |

FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        |                    | APPLICATION NO.        |          |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|----------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A2                                                                                                                                                                                                     | 19770106           | JP 1975-78949          |          |  |  |
| PRIORITY APPLN. INFO.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                        |                    | JP 1975-78949          | 19750624 |  |  |
| <ul> <li>AB The Pb-free glaze in an organic vehicle (0.5-20 parts solids) containing 90-9.9 glaze mixture (SiO2 30-40, TiO2 10-20, M2O (M = K, Na, and Li) 5-15, B2O3 15-25, and Na2SiF6 5-20) and 0.1-10% Pd was used to coat a glass or ceramic. An electroless plating can be applied on the glazes. Thus, a wet-milled glaze containing SiO2 36, TiO2 17, Na2O 14, B2O3 19, Na2SiF6 6, ZrO2 2, P2O5 3, and Al2O3 3% was mixed with 4% Pd black, kneaded with 1% pine oil base organic vehicle, screen printed on a glass, heated, and electroless coated with Ni.</li> </ul> |                                                                                                                                                                                                        |                    |                        |          |  |  |
| L37 ANSWER 19 OF 33 C<br>ACCESSION NUMBER:<br>DOCUMENT NUMBER:<br>TITLE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1974:3<br>80:333                                                                                                                                                                                       | 33305 CAPLU<br>305 |                        | lativo   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mater                                                                                                                                                                                                  | alc                | rectrodes using bonded | i active |  |  |
| INVENTOR (S) :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | materials<br>INVENTOR(S): Kilduff, Timothy J.<br>PATENT ASSIGNEE(S): United States Dept. of the Army<br>GOURCE: U.S., 6 pp. Continuation-in-part of U.S. 3,629,007 (CA<br>76;67424d).<br>CODEN: USXXAM |                    |                        |          |  |  |
| DOCUMENT TYPE:<br>LANGUAGE:<br>FAMILY ACC. NUM. COUNT:<br>PATENT INFORMATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Patent<br>Englis                                                                                                                                                                                       | ;                  |                        |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                        | DATE               | APPLICATION NO.        |          |  |  |

| US 3751301          | А   | 19730807 | US 1970-54273  | 19700713 < |
|---------------------|-----|----------|----------------|------------|
| US 3629007          | A   | 19711221 | US 1969-847906 | 19690806 < |
| PRIORITY APPLN. INF | 0.: |          | US 1969-847906 | 19690806   |

A method is described for preparing battery electrodes, in which a metal AB support is coated with a corrosion-resistant elec. conductive material and then with an active material such as PbO2 dispersed in a resinous binder. The corrosion-resistant elec. conductive underlayer is applied in an amount sufficient to prevent corrosion of the metal support and sufficient to prevent formation of an interfacial resistance barrier between the metal support and the subsequently applied coating. The elec. conductive material is applied to the support in admixt. with a thermosetting resin. Alternatively, the metal support is flash-plated with a metal which is either inert to oxidation when in contact with the active material or forms a conductive oxide in contact with the active material. In the 1st embodiment, the active material is applied to the 1st layer in admixt. with a thermosetting resin. Activation time can be reduced by applying dry PbO2 particles to the surface of the active material. For example, epoxy resin and Me2CO were mixed with 2-ethyl-4-methylimidazole and applied to a 0.004-in. thick steel shim by pouring the resin over the steel. The solvent was removed by air drying, and conductive C in C2Cl3F3 was sprayed onto the dry resin coating. A 20-lb brass roller preheated to 80° was then rolled over the C to force it through the resin until contact was made with the base metal. The resin was then cured, and the total thickness of the C resin base coat was 0.0001-0.0002 in. H2O was added to Genepoxy a water emulsifiable epoxy resin. A polyamide was then added. The contents were vigorously mixed and emulsified. The emulsion was added to a vessel containing PbO2 and thoroughly mixed. This mixture was applied to the C-resin base by using a silk screen. Immediately after the PbO2 top coat was applied, the composite was heated at 65-70° for 2 hr to cure it. The PbO2-resin coating

was .apprx.0.007 in. thick. When a load of 240 mA/in.2 was applied, the voltage initially dropped .apprx.0.3 V from its no-load value and then stabilized at .apprx.1.5 V. No significant decrease in voltage occurred until after .apprx.8 min of operation.

| L37 ANSWER 20 OF 33 (   | CAPLUS COPYRIGHT 2004 ACS on STN                                               |
|-------------------------|--------------------------------------------------------------------------------|
| ACCESSION NUMBER:       | 1973:47190 CAPLUS                                                              |
| DOCUMENT NUMBER:        | 78:47190                                                                       |
| TITLE:                  | Nonflow solder-stop glasses comprising <b>lead</b><br>-zinc borate and ceramic |
| INVENTOR(S):            | Dietz, Raymond Louis                                                           |
| PATENT ASSIGNEE(S):     | Owens-Illinois, Inc.                                                           |
| SOURCE:                 | U.S., 3 pp.                                                                    |
|                         | CODEN: USXXAM                                                                  |
| DOCUMENT TYPE:          | Patent                                                                         |
| LANGUAGE:               | English                                                                        |
| FAMILY ACC. NUM. COUNT: | 1                                                                              |
| PATENT INFORMATION:     |                                                                                |

| PATENT NO.             | KIND | DATE     | APPLICATION NO. | DATE       |
|------------------------|------|----------|-----------------|------------|
|                        |      |          |                 |            |
| US 3703386             | А    | 19721121 | US 1970-84530   | 19701027 < |
| PRIORITY APPLN. INFO.: |      |          | US 1970-84530   | 19701027   |

AB A solder stop composition (mask) is prepared which does not exhibit flow during firing at 600-780°. The solder stop is nonporous and contains particulate glass (firing temperature <750°) 60-90 and powdered ceramic

(average

particle size <5  $\mu$ ) 10-40 weight %. The glass contains PbO 30-40, B2O3 30-40, ZnO 25-30, and CuO  ${\leq}5$  weight %. The ceramic contains  ${\geq}1$  of ZrSiO4, BaZrSiO4, MgZrSiO4, ZnZrSiO4, SiO2, Al2O3, and TiO2. For example, ZrSiO4 (Excelopax) 6.6 g. was dry-blended with fritted glass (containing PbO 34.8, B2O3 36.2, ZnO 28, and CuO 1.0%), 18.75 g. The particle size of the Zr was <1  $\mu$  and the particle size of the fritted glass was 5  $\mu$ . This blend was mixed with 8.45 g pine oil to form a printing paste. The paste was screen printed on an Al2O3 (96%) substrate which had a thermal expansion coefficient of 79 + 10-7/degree which already had a printed and fired Pd-Au conductor. The Pd-Au conductor was fired at 870°. The paste was screen printed on the conductor prividing a mask and left only precise areas on the substrate available for soldering. The paste was applied as a single **coat** using a 165 mesh **screen**. The coating was dried at 100° for 10 min and then fired at 770° using 10 min heat up and cool down periods with a peak hold of 5 min. The resulting coating was 1 mil thick and partially crystallized During the initial firing and 3 subsequent refirings the glass coating showed no flow and maintained unmasked areas for soldering. The coating formed a strong bond both with the Al203 substrate and with the printed conductor. Without the zircon addition the coating flowed to such an extent that it was not useful as a solder stop.

| L37 ANSWER 21 OF 33 CA  | PLUS COPYRIGHT 2004 ACS on STN                          |
|-------------------------|---------------------------------------------------------|
| ACCESSION NUMBER:       | 1972:73868 CAPLUS                                       |
| DOCUMENT NUMBER:        | 76:73868                                                |
| TITLE:                  | Protective coating for cables adjacent to a splash zone |
| INVENTOR (S) :          | Wiswell, George C. Jr.                                  |
| SOURCE :                | U.S., 3 pp.                                             |
|                         | CODEN: USXXAM                                           |
| DOCUMENT TYPE:          | Patent                                                  |
| LANGUAGE :              | English                                                 |
| FAMILY ACC. NUM. COUNT: | 1                                                       |
| PATENT INFORMATION:     |                                                         |
|                         |                                                         |

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|------|-----------------|------|
|            |      |      |                 |      |

US 3620861 А 19711116 US 1969-869550 19691027 <--PRIORITY APPLN. INFO.: US 1969-869550 19691027 Deterioration of an armored communication or power cable in a splash zone AB was prevented by stripping the cable to the lead sheath, applying an epoxy resin containing a hardener, wrapping the cable with a porous fabric and applying a 2nd resin coat after the first has cured. The cleaned, epoxy-coated lead sheath was wrapped with fiberglass screen as the porous fabric. L37 ANSWER 22 OF 33 CAPLUS COPYRIGHT 2004 ACS on STN ACCESSION NUMBER: 1970:533724 CAPLUS DOCUMENT NUMBER: 73:133724 TITLE: Coating of plastic articles with refractory compounds INVENTOR(S): Steel, Margaret L.; Eagles, Alan C. PATENT ASSIGNEE(S): Imperial Chemical Industries Ltd. SOURCE: Brit., 5 pp. CODEN: BRXXAA DOCUMENT TYPE: Patent LANGUAGE: English FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION: KIND DATE PATENT NO. APPLICATION NO. DATE ---------------GB 1206771 19700930 GB 19670207 <--The surfaces of sheets or molded shapes of plastics such as Me AB methacrylate polymers can be provided with transparent hard craze-free coatings up to 50 + 10-4 mm thick, or if transparency is not essential, up to several mils thickness, by exposure under vacuum to the emission from a refractory oxide, carbide, silicide, nitride, boride, glass, or mixture thereof, resulting from electron bombardment. The electron source can be a heated ring filament of Ta or Mo, allowing the electrons to be focussed on the refractory surface electrostatically, with the electrodes shielding the articles to be coated from excessive heat. Primer coatings, such as 300 Å thick Cu which is transparent, or Ni, Cr carbide, or ZrO2, are useful when Pyrex glass is the external hard coat. In operation, the plastic article is exposed, inside a vessel evacuated to 10-5 torr, to the general target area of a particulate electron beam emitted from compacted refractory powder at the local point of the gun, the exposure being regulated with a screen to periods of a few min to avoid distortion and crazing of the target by excessive heat. Details are given for 22 examples, such as 6 min exposure of a clean dry clear acrylic "Perspex" sheet 6.25 in. above a graphite crucible containing compacted Ti nitride powder, which was evaporated with 100 mΑ electron current, 27 A filament current, and 3 kV accelerating voltage, to give an uncrazed transparent water-insensitive film 935 Å thick on the sheet. L37 ANSWER 23 OF 33 CAPLUS COPYRIGHT 2004 ACS on STN ACCESSION NUMBER: 1970:123038 CAPLUS DOCUMENT NUMBER: 72:123038 TITLE: Ilmenite-chromite pigments for ferrous metal primers PATENT ASSIGNEE(S): Galvanol International Co. SOURCE : Fr., 3 pp. CODEN: FRXXAK DOCUMENT TYPE: Patent LANGUAGE : French FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION: PATENT NO. KIND DATE APPLICATION NO. DATE --------------------19690822 FR

19671113 <--

FR 1578727

|                 | DE 1669171                                        |         |                                       | DE                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------|---------------------------------------------------|---------|---------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | US 3544346                                        |         | 19700000                              | US                                            | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| AB              | Powdered mixts. of                                | raw ore | es containing                         | 0.5-99.5% ilmenite                            | (I) and 99.5-0.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 | chromite (11) give                                | pigment | s for primer                          | s that impart better                          | corrosion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | protection and have                               | more h  | liding power                          | than red <b>lead</b> (III).                   | The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | preferred mixts. co                               | ntain 2 | 25-75% I and                          | the rest II and are g                         | jround to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | particles sized to                                | pass a  | screen with                           | openings ≤0.047 mm.                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | 72 5 tupa oil 10 5                                | made by | vusual metho                          | ds, consisting of a p                         | owdered I-II mixture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | a control nigmented                               | , DOLLE | the same weight                       | l 3, and whilte spiri<br>ht% of III. Both pri | t 6, along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | on sep mild steel                                 | toot no | ne same werg                          | <b>ats</b> , and the dry pane                 | mers were applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 | were compared by us                               | ing Bri | tich Standar                          | d tests for resistand                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | spray, to SO2 and t                               | 0 H20.  | in all tests                          | , the control gave po                         | e to sait                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | Fillers and suspend                               | ing age | ents may be a                         | dded to compns. conta                         | ining T and TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                 | I-II pigment mixts.                               | and pr  | iming compns                          | . containing them are                         | e claimed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 |                                                   | *       | 5 1                                   |                                               | of a function of the second seco |
| L37             | ANSWER 24 OF 33 CA                                | PLUS C  | OPYRIGHT 200                          | 4 ACS on STN                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ACCES           | SSION NUMBER:                                     |         | 72169 CAPLU                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DOCUI           | IENT NUMBER:                                      | 69:721  | .69                                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TITLI           |                                                   | Glass   | composition                           | insulated conductors                          | and coils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | NTOR(S):                                          | Pendle  | ton, Wesley                           | W.; Ostrander, George                         | • W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | NT ASSIGNEE(S):                                   |         | da Wire and                           | Cable Co.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SOUR            | CE:                                               | U.S.,   |                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>D</b> 0 01 0 |                                                   |         | USXXAM                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | IENT TYPE:                                        | Patent  |                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LANGU           |                                                   | Englis  | h                                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | Y ACC. NUM. COUNT:<br>T INFORMATION:              | 1       |                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| IAIDI           | I INFORMATION.                                    |         |                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | PATENT NO.                                        | KIND    | DATE                                  | APPLICATION NO.                               | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 |                                                   |         |                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | US 3398004                                        | А       | 19680820                              | US 1964-337553                                | 19640114 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PRIOF           | RITY APPLN. INFO.:                                |         |                                       | US 1964-337553                                | 19640114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AB              | Magnet wire for elec                              | c. coil | s to operate                          | at 800-900° and resi                          | stant to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 | $\gamma$ -rays and fast neut                      | trons i | s made with 1                         | Ni-alloy (such as                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 | Inconel) - cald Ag con                            | aductor | s coated wit                          | n a dispersion of alk                         | ali and B-free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                 | glass frit with add                               | ed refr | actory mater                          | ial, suspended in an                          | organic resin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | solution After the                                | coils   | are wound, t                          | ne organic components                         | are eliminated by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 | firing, followed by                               | fusing  | of the glas                           | s frit. Thus, the gl                          | ass frit is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | prepared by mixing I                              | 3aO 45, | S102 38, Al:                          | 203 2.2, CaO 9.0, ZnO                         | 5.8, all in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | Cr202 and ball mil                                | (C, /2- | 80 parts of 1                         | this frit is mixed wi                         | th 20-8 parts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | <72 w and page a 200                              | Lea 96- | 168 nrs. The                          | e final particle size                         | should be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | $\leq 72 \mu$ and pass a 200 dispersed in giliage | J-mesn  | screen. The                           | ils mixture is                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | $DC_{-1090}$ and then                             | ne-moul | tied polyeste                         | er resin solution (D<br>actor in the conventi | ow-Corning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | coats and cured M                                 | ippileu | co the cond                           | wound, the organic pa                         | onal multiple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | eliminated in a furr                              | ler um  | 500° in alt                           | ernate 15-min. cycles                         | rt 1s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | and vacuum, and the                               |         | is fused at (                         | and for 10 min The                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | of the inorg, to or                               | anic c  | ontent of the                         | e dispersion depends                          | ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | size. For a Number                                | 30 A W  | G (American                           | Wire Gage) wire the                           | The conductor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | 1:1, and for a Number                             | er 18 w | ire, 0.25:1.                          | i wire dage, wire the                         | Tacio snoulu be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |                                                   |         | •                                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| L37             | ANSWER 25 OF 33 CAR                               | PLUS CO | OPYRIGHT 2004                         | ACS on STN                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ACCES           | SION NUMBER:                                      | 1961:30 | 0515 CAPLUS                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | ENT NUMBER:                                       | 55:305  | 15                                    |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | NAL REFERENCE NO.:                                |         | lg,5992a-c                            |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TITLE           |                                                   | Perfluc | orochloroolef                         | in polymer primers                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | TOR(S):                                           | Long, 1 | Lamar E.                              |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | T ASSIGNEE(S):                                    | Minnes  | ota Mining ar                         | d Manufacturing Co.                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | ENT TYPE:                                         | Patent  | , , , , , , , , , , , , , , , , , , , |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LANGU           |                                                   | Unavai] | Lable                                 |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | Y ACC. NUM. COUNT:<br>T INFORMATION:              | 1       |                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |                                                   |         |                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

.

| PATENT NO. | KIND | DATE     | APPLICATION NO. | DATE |
|------------|------|----------|-----------------|------|
|            |      |          |                 |      |
| US 2961341 |      | 19601122 | US              | <    |

AB

Chemical resistant and heat-stable primer compns. are made from homopolymers of perfluorochloroolefins (I) or copolymers of I with H-containing halogenated olefins and a Co oxide, e.g. CoO, Co2O3, or Co3O4. These primers can be used under topcoats of I without use of an intermediate mixed coat of polymer and adhesive or they may be used by themselves as a singlecoat system. The preferred polymers are the homopolymer of chlorotrifluoroethylene (II) or the copolymer of II and vinylidene fluoride; the copolymer should contain at least 80 mole % II. These polymers are solid and have no-strength temps. of >250° and mol. wts. >50,000. They are dispersed as a finely divided powder passing through a number 200 sieve in a solvent such as toluene, MeCOEt, AmOAc, or H2O in combination with BuOH. Co oxide should pass through a 300-mesh screen and is dispersed in the same solvents as the polymers. The preferred ratio of polymer to Co oxide is between 3:0.5 and 3:2. For improved thermal stability, a Cr oxide, Mo oxide, and (or) Mo sulfide may be added. The Co oxide decreases the chemical resistance but improves the adhesion of the coating to such substrates as metal, concrete, glass, and plastics which withstand temps. up to 600°. Low-mol.-weight polymers and telomers of I as plasticizers and chromic oxide or polyurethans to improve the bonding strength may be used, as well as inert fillers.

| L37 ANSWER 26 OF 33 CAP | PLUS COPYRIGHT 2004 ACS on STN        |
|-------------------------|---------------------------------------|
| ACCESSION NUMBER:       | 1957:7076 CAPLUS                      |
| DOCUMENT NUMBER:        | 51:7076                               |
| ORIGINAL REFERENCE NO.: | 51:1508c-d                            |
| TITLE:                  | Structural materials for use as armor |
| INVENTOR (S) :          | Toulmin, Harry A., Jr.                |
| PATENT ASSIGNEE(S):     | Commonwealth Engineering Co. of Ohio  |
| DOCUMENT TYPE:          | Patent                                |
| LANGUAGE:               | Unavailable                           |
| FAMILY ACC. NUM. COUNT: | 1                                     |
| PATENT INFORMATION:     | ×                                     |

| PATENT NO.            | KIND     | DATE     | APPLICATION NO. | DATE |
|-----------------------|----------|----------|-----------------|------|
|                       |          |          |                 |      |
| US 2758952            |          | 19560814 | US              | <    |
| Riberry even bleve en | <b>-</b> |          |                 |      |

AB Fibers are blown onto a **screen** to form a mat which is then heated and exposed to an atmospheric of a heat-decomposable metal-containing compound

The metal layer formed over the fibers is continuous and resistant to shearing by projectiles. The products can be used for personnel shielding, armor plate for vehicles, table tops, housings, or in any operation where a high impact resistance plus lightness in weight are requirements. Some useful plating materials are Ni(CO)4, Cr(CO)6, Mo(CO)6, W(CO)6, and Cu(C5H7O2)2. Glass or SiO2 fibers are preferred and it is desirable to **coat** the metalized assemblies with a resinous material, preferably a polyester having a high degree of adherence to metal.

| L37 ANSWER 27 OF 33 CAPLUS COPYRIGHT 2004 ACS on STN                        |
|-----------------------------------------------------------------------------|
| ACCESSION NUMBER: 1943:6453 CAPLUS                                          |
| DOCUMENT NUMBER: 37:6453                                                    |
| ORIGINAL REFERENCE NO.: 37:1097e-f                                          |
| TITLE: A field test for quicksilver                                         |
| AUTHOR(S): Fansett, George R.                                               |
| SOURCE: Mining Congress Journal (1942), 28(No. 11),                         |
| 28                                                                          |
| CODEN: MCJOAV; ISSN: 0026-5160                                              |
| DOCUMENT TYPE: Journal                                                      |
| LANGUAGE: Unavailable                                                       |
| AB These tests are described: (1) Heating Hg ore with soda in a closed tube |

forms metallic globules of Hg on the sides of the tube. (2) Most Hg compds., if moistened with HCl and rubbed on bright Cu surfaces, will **coat** the Cu. (3) Boiling Hg ore with HCl, adding MnO2 and dipping a bright piece of Cu into this solution forms a layer of Hg on the Cu. (4) Powdering and heating the ore, illuminating it with ultraviolet light and placing a willemite-coated **screen** behind the sample produces a dense shadow on the **screen** as the Hg volatilizes; in the absence of Hg the willemite **screen** fluoresces a uniform strong green over the surface.

```
L37 ANSWER 28 OF 33 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1937:19269 CAPLUS
DOCUMENT NUMBER: 31:19269
ORIGINAL REFERENCE NO.: 31:2703f-i,2704a-i,2705a-d
TITLE: American Society for Testing Materials, Tentative
Standards
SOURCE: (1936), 1390 pp.
DOCUMENT TYPE: Book
LANGUAGE: Unavailable
```

cf. C. A. 30, 2279.7. Tentative standards are given for structural-Ni, rivet, coldrolled strip and concrete-reinforcement steels; steel rail accessories and forgings for locomotives; steel wheels; C- steel castings; boiler tubes of elec.-resistance-welded steel, open-hearth Fe and seamless steel; steel and alloy-steel (4-6% Cr) heat-exchanger and condenser tubes; steel pipe flanges for general service; alloy-steel (4-6% Cr) and low-C steel still tubes for refineries; steel bolting material and nuts for high-temperature service; corrosion-resisting Cr and Cr-Ni steel castings and sheet, strip and plate steels; galvanized coatings on hardware and fastenings; Preece test for uniformity of coating on galvanized Fe or steel wire; electrodeposited coatings of Zn, Cd, Ni and Cr on steel; wrought-Fe bars, plates, rivets and rivet rounds; cast and malleable Fe including castings, culvert pipe and wheels; terms relating to cast Fe; Al, Al-alloy and Al-Mn alloy sheet and plate; Al-alloy ingots, castings, shapes, bars and rods; Mg ingot and stick for remelting; Mg-alloy sheet, castings, ingot for remelting, forgings, bars, rods and shapes; brass and bronze including castings for turntables, locomotive parts and journal bearings; phosphor bronze including bearings and expansion plates; Cu-Ni alloy condenser tubes and ferrule stock; Cu-Si alloy plates, sheets, wire, rods, bars and shapes; Pb-coated Cu sheets; Cu wire and cable; die castings of Al-, Pb-, Sn-, Mg- and Zn-base alloys; test for flexivity of thermoflex (thermostatic metals); test for linear expansion of metals; masonry cement; analysis of and fineness test for portland cement; test for compressive strength of portland-cement mortars; CaO and Ca(OH)2 for structural purposes; sand for use in plaster; terms relating to the gypsum ind.; brick from clay or shale; glazed building units; testing brick (modulus of rupture, compressive strength and absorption); sampling, compression and tension testing of, and terms relating to, natural building stone; testing of high-temperature heat insulation; test for

resistance

AB

to spalling of superduty fireclay brick; terms relating to refractories; symbols for heat tranmission; concrete irrigation and culvert pipe; terms relating to clay sewer pipe; concrete aggregates and test for fineness thereof; test for coal and lignite in sand; flexure tests of concrete; test for flow of portland-cement concrete; test for soundness of concrete aggregates by use of Na2SO4 or MgSO4; determination of sp. gr., absorpton and voids in concrete aggregates; terms relating to concrete and concrete aggregates; classification of coals; designating the size of coal from its screen analysis; test for grindability of coal, test for screen analysis of coal; definition of coke; definition of gross and net calorific values of fuels; timber and timber preservatives including ZnCl2; basic sulfate blue lead; tests for hiding power of white pigments and of paints; petroleum spirits; soybean oil; testing of oleoresinous varnishes; testing of nitrocellulose-base solns. and lacquer and lacquer enamels; wood for use in weather tests of paints and varnishes; fuel oils; tests for color of lubricating oils, petrolatum and refined petroleum oil; test for knock of motor fuels; determination of neutralization number of petroleum products and lubricants; test for expressible oil and moisture in paraffin waxes; test for penetration of greases and petrolatum; test for S in petroleum oils; tests for vapor pressure of gasolines; viscosity-temperature chart for liquid petroleum products; terms relating to petroleum; asphalt cement of various penetrations for use in road and pavement construction; asphalt filler for brick pavements; concrete for pavements; emulsified asphalt and its testing; mineral filler for sheet asphalt and bituminous concrete pavement; sand, gravel and stone for various road-building purposes; tar; tar cement; test for abrasion of gravel; test for consistency of portland-cement concrete; bituminous paving plant inspection; surveying and sampling soils for use in place as subgrades for highways; preparing soil samples as received from the field for mech. analysis and the determination of

the

subgrade soil consts.; mech. analysis of soils; tests for liquid limit, plastic limit, plasticity index, moisture equivs. and shrinkage factors of soils; asphalt roofing materials surfaced with various kinds of mineral granules and the testing thereof; asphalt for roofs and for water-proofing; coal-tar pitches for roofing and for waterproofing; creosote for priming coat with coal-tar pitch in waterproofing; primer for use with asphalt in waterproofing; test for coarse particles in mixts. of asphalt and mineral matter; varnished tape and tubing used in elec. insulation and tests therefor; testing solid filling and treating compds., laminated round rods and tubes, molding powders, paper, sheet and plate materials, shellac and varnishes used for elec. insulation; testing sheet, tape and molded insulating materials for dielec. strength; tests for resistance to impact power factor, dielec. constant and thermal conductivity of

elec.-insulating materials; grading mica; determination of saponification number of

elec.-insulating oils; test for conducting paths in elec. slate; test for thickness of solid elec. insulation; rubber friction tape, insulating tape and pump valves; rubber-insulated wire and cable; phys. testing of rubber products; tension testing of vulcanized rubber; tests for accelerated aging, adhesion, compression set, abrasion resistance and flexing of rubber or rubber products; identification of fibers in textiles and quant. analysis of textiles; tests for properties of cotton fibers; test for fastness of dyed or printed fabrics to washing; tests and tolerances for carded cotton goods, woven tapes and rayon; test for strength of rayon woven fabric when wet; test for shrinkage of silk and rayon woven goods; test for resistance to yarn slippage in silk and rayon goods; test for fineness of wool; testing of pile floor covering; test for Cu and Mn in textiles; terms relating to textile materials; bend testing for ductility of metals; compression, impact and tension tests of metallic materials; analysis of particle-size distribution of sub-sieve size particulate substances; test for softening point by ring-and-ball apparatus; consistency and plasticity terms; and the term screen (sieve). Tentative revisions of standards are given for alloy-steel bolting material for high-temperature service; slab Zn; Mn-bronze ingots and castings; CaO and Ca(OH)2 for structural purposes; concrete sewer pipe; building brick; testing brick; determination of voids in cement aggregate; fire-clay refractories;

terms relating to sand, refractories and the gypsum ind.; lithopone; raw tung oil; sampling and testing shellac; analysis of white linseed-oil paints; broken slag for water-bound base and wearing course; block for granite pavements; chafer tire fabrics; testing and tolerances for tire cord; testing molded materials used for elec. insulation; testing elec.-insulating oils; sampling and analysis of coal and coke; terms relating to coal and coke; and terms relating to timber preservatives.

L37 ANSWER 29 OF 33 CAPLUS COPYRIGHT 2004 ACS on STN ACCESSION NUMBER: 1931:19751 CAPLUS

| DOCUMENT NUMBER:        | 25:19751                                                  |
|-------------------------|-----------------------------------------------------------|
| ORIGINAL REFERENCE NO.: | 25:2210e-i,2211a-i,2212a-i                                |
| TITLE:                  | American Society for Testing Materials, Standards         |
| SOURCE :                | (1930), (two parts), 2214 pp.                             |
| DOCUMENT TYPE:          | Journal                                                   |
| LANGUAGE :              | Unavailable                                               |
| AB Standard specificati | ons are given for: open-hearth C-steel rails; manufacture |

of

open-hearth steel girder rails; splice bars of various types of C steel; track bolts and spikes of various kinds of steel; steel screw spikes and tie plates; structural steel of various types and uses; rivet steel for boilers and for ships; boiler and firebox steel; steel plates of structural and of flange quality for forge welding; billet-steel and rail-steel concrete reenforcement bars; cold-drawn steel wire for concrete reenforcement; com. hot-rolled bar steels; com. cold-finished bar steels and shafting; C-steel bars for railway springs with and without special Si requirements; C-steel bars for vehicle and general-purpose springs; silico-Mn-steel and chrome-V-steel bars for railway springs; helical springs and elliptical springs for railways; C-steel and alloy-steel forgings and blooms, billets and slabs for forgings; quenched and-tempered C-steel and alloy-steel forgings for locomotives and cars; C-steel car and tender axles; cold-rolled steel axles; wrought solid C-steel wheels for railways; steel tires and castings; C-steel castings for railroads; lap-welded and seamless steel and lap-welded Fe boiler tubes; welded and seamless steel pipe; C, high-speed, and alloy tool steel; C-steel castings for valves, flanges and fittings for high-temperature service; alloy-steel bolting material for high-temperature service; forged or rolled steel pipe flanges and lap-welded and seamless steel pipe for high-temperature service; Zn coatings on structural steel shapes, plates and bars and their products; Zn-coated (galvanized) sheets, telephone and telegraph line wire, tie wires, fencing, barb wire and steel wire strand; welded wrought-Fe pipe; staybolt, engine-bolt and extra-refined wrought-Fe bars; hollow-rolled staybolt Fe; common Fe bars; wrought-Fe plates; wrought-Fe rolled or forged blooms and forgings for locomotives and cars; Fe and steel chain; foundry pig Fe; cast-Fe pipe and special castings, soil pipe and fittings, locomotive cylinders, and wheels; malleable castings; gray-Fe castings; the arbitration test bar and tension test specimen for cast-Fe; W powder; spiegeleisen; ferro-Mn; ferro-Si; ferro-Cr; ferro-V; wire bars, cakes, slabs, billets, ingots and ingot bars of lake Cu and of electrolytic Cu; slab Zn; rolled Zn; pig Pb; Ni; Al for use in the manufacture of Fe and steel; Al ingots for remelting; Al sheet; phosphor Sn; phosphor Cu; silicon Cu; hot-rolled Cu rods for wire drawing; Cu wire of various kinds; bare Cu cable; bronze trolley wire; an alloy of Cu 88, Sn 10 and Zn 2%; sand castings of an alloy of Cu 88, Sn 8 and Zn 4%; bronze bearing metal; bronze castings; composition brass or oz-metal sand castings; yellow brass sand castings; Mn-bronze sand castings and ingots for sand castings; Al-bronze castings; solder metal; Ag and brazing solders; white metal bearing alloys (Babbitt metal); lined car and tender journal bearings; Cu plates for locomotive fireboxes; Cu bars for locomotive staybolts; seamless boiler tubes of Cu and of brass; seamless admiralty condenser tubes and ferrule stock; seamless condenser tubes and ferrule stock of 70-30 brass and of Muntz metal; Muntz metal condenser-tube plates; Cu pipe and seamless tubes; brass pipe and forging rods; free-cutting brass rod for use in screw machines; cartridge brass; cartridge brass disks; naval brass rods for structural purposes; sheet high brass; non-ferrous insectscreen cloth; portland cement; natural cement; CaO and Ca(OH)2 for structural purposes and for use in the cooking of rags for paper manufacture; CaO for use in the manufacture of sulfite pulp; Ca(OH)2 for the manufacture of varnish; CaO and Ca(OH)2 for use in the textile industry, for the manufacture of SiO2 brick, and for use in water treatment; gypsum; calcined gypsum; calcined gypsum for use in preparation of dental plasters; Keene's cement; gypsum plasters for various uses; gypsum plastering sand, wall board, plaster board and partition tile; building brick; paving brick; clay sewer brick and pipe; clay fire brick for various uses; cement-concrete sewer

pipe; drain tile; specifications and test for hollow burned-clay wall tile, floor tile and fireproofing, partition and furring tile; raw linseed oil; Perilla oil; gum spirits of turpentine; steam-distilled and destructively distilled wood turpentine; Zn oxide; leaded Zn oxide; basic carbonate and basic sulfate white leads; red lead; mineral Fe oxide; ocher; lithopone; lampblack; bone black; chrome yellow; pure chrome green; reduced chrome green; chrome oxide green; Prussian blue; ultramarine blue; com. para red; materials for cement grout filler for brick and stone block pavements; materials for cement mortar bed for brick, stone block, wood block, asphalt block and other block pavements; block for various types of granite pavement; gravel for bituminous concrete base; broken stone and broken slag for various uses for roads; sand for sheet asphalt and bituminous concrete pavements; high-C and low-C tar for surface treatment (hot and cold application); high-C and low-C tar cements; coal-tar pitch for stone block filler; gas and coking coals; foundry coke; structural wood; wooden paving blocks; asphalts and primer (for use with asphalt) for use in damp-proofing and waterproofing; high-C coal-tar pitches and high-bitumen coal-tar pitches for use in damp-proofing and waterproofing; high-C coal-tar pitch and high-bitumen coal-tar pitch for use in constructing built-up roofs surfaced with slag or gravel; creosote oil for priming coat with coal-tar pitch in damp-proofing and waterproofing; asphalt mastic for use in waterproofing; acid-resisting asphalt mastic; bituminous grout for use in waterproofing; woven cotton fabrics and burlap saturated with bituminous substances for use in waterproofing; asphalt roll-roofing surfaced with powdered tale or with granular talc; asphalt roll-roofing and asphalt shingles surfaced with mineral granules; asphalt-saturated and coal-tar-saturated roofing felts for

use.

in water-proofing and in constructing built-up roofs; asphalt-saturated asbestos felt for use in constructing built-up roofs; air hose for use with pneumatic tools; wrapped cold-water hose; rubber gloves for elec. workers; rubber matting for use around elec. apparatus or circuits; rubber pump valves; friction tape for general use for elec. purposes; textile testing machines; tolerances and test methods for single and plied cotton yarns, for elec. cotton yarns, for cotton sewing threads, for certain light and medium cotton fabrics, for tire fabrics other than cord fabrics, for tire cord (woven and on cones), for elec. silk and cotton tapes and for asbestos yarns; tolerances for numbered cotton duck, for 23/5/3 carded American tire cord and for hose ducks and belt ducks; specifications and tests for Osnaburg cement sacks; A. S. T. M. partial-immersion thermometer for general use for various temperature intervals; sieves for testing purposes. Standard methods are given for: sampling rolled and forged steel products for check analyses; chemical anal. of plain C steel, of alloy steels, of ferro-alloys, of slab Zn (spelter), of pig Pb, of Ni, and of alloys of Pb, Sn, Sb and Cu; chemical anal. of Mn bronze, of gun metal, of brass ingots and sand castings and of bronze bearing metals; determining weight of coating on Zn-coated articles and on Sn, terne, and Pb-coated sheets; test for magnetic properties of Fe and steel; testing Zn-coated (galvanized) Fe and steel wire and wire products; sampling and chemical anal. of pig and cast Fe; sampling ferro-alloys; battery assay of Cu; test for resistivity of metallic materials for resistors; test for change of resistance with temperature

of metallic materials for elec. heating; metallog. testing of Fe and steel and of non-ferrous metals and alloys; verification of testing machines; Brinell hardness testing of metallic materials; testing cement; chemical anal. of limestone, quicklime and hydrated lime; sampling, inspection, packing and marking of quick lime and lime products; testing gypsum and gypsum products; making and storing compression test specimens of concrete in the field; making compression tests of concrete; securing specimens of hardened concrete from the structure; tests for unit weight of aggregate for concrete, for determination of voids in fine aggregate for concrete, for

## organic

impurities in sands for concrete, for sieve anal. of aggregates for concrete, for approx. apparent sp. gr. of fine aggregate, for approx.

percentage of voids in inundated fine aggregate, for surface moisture in fine aggregate, for refractory materials under load at high temps., for porosity and permanent volume changes in refractory materials, and for softening point of fire-clay brick; ultimate chemical anal. of refractory materials, including chrome ores and chrome brick; sampling and testing turpentine; test for sp. gr. of pigments; test for coarse particles in dry pigments and coarse particles and skins in mixts. of pigments and vehicles; testing oleo-resinous varnishes; test for flash point of volatile inflammable liqs.; routine analyses of white pigments, of white linseed oil paints, of dry red **lead**, of Ti pigments, of dry Cu20 and of dry HgO; routine anal. of yellow, orange, red and brown pigments containing Fe and Mn; routine anal. of yellow and orange pigments containing

Cr

compds., blue pigments and chrome green; anal. for the color characteristics of paints in terms of fundamental phys. units; test for determination of toluene-insol. matter in rosin (chiefly sand, chips, dirt and bark); abridged volume-correction table for petroleum oils; anal. of grease; tests for burning quality of kerosene oils, of long-time burning oil for railway use, and of mineral seal oil; tests for C residue of petroleum products (Conradson C residue), for cloud and pour points of petroleum products, for detection of free S and corrosive S compds. in gasoline, for the determination of autogenous ignition temps., for the distillation of

natural-gas

gasoline, for flash point by means of the Pensky-Martens closed tester, for flash and fire points by means of open cup, for m. ps. of paraffin wax and petrolatum, for saponification number, for steam emulsion of lubricating

oils,

for S in petroleum oils heavier than illuminating oil, for thermal value of fuel oil, for viscosity of petroleum products and lubricants, for water in petroleum products and other bituminous materials, for water and sediment in petroleum products by centrifugal means, and for the distillation

## of

gasoline, naphtha, kerosene and similar petroleum products; testing gas oils (sp. gr., distillation, S, C residue, pour point, viscosity, water);

tests

for abrasion and toughness of rock and for apparent sp. gr. of coarse aggregates and of sand, stone and slag screenings, and other fine non-bituminous highway materials; decantation test for sand and other fine aggregates; test for quantity of clay and silt in gravel for highway construction; test for the determination of moisture equivalent of subgrade

soils in

the field; sampling stone, slag, gravel, sand and stone block for use as highway materials; mech. anal. of broken stone, broken slag, sand or other fine highway material or mixts. of materials, except aggregates used in cement concrete; form of specifications for certain com. grades of broken stone; test for the determination of bitumen; test for the determination of proportion of

bitumen soluble in CCl4; tests for loss on heating of oil and asphaltic compds., for distillation of bituminous materials suitable for road treatment, for penetration of bituminous material, for softening point of bituminous materials (ring and ball method) and for softening point of tar products (cube-in-water method); float test for bituminous materials; test for sp. gr.of road oils, road tars, asphalt cements and soft tar pitches; test for sp. gr. of asphalts and tar pitches sufficiently solid to be handled in fragments; sampling bituminous materials; sampling coal; laboratory sampling

## and

anal. of coal and coke; tests for fineness of powdered coal, for sieve anal. of crushed bituminous coal and of coke, for cu. ft. weight of crushed bituminous coal and of coke, and for volume of cell space of lump coke; shatter test for coke; tumbler test for coke; testing small clear specimens of timber; conducting static tests of timbers in structural sizes; sampling and anal. of creosote oil; tests for coke residue and distillation of creosote oil; chemical anal. of ZnCl2; testing bituminous

mastics,

grouts and like mixts.; test for steam distillation of bituminous protective coatings; testing felted and woven fabrics saturated with bituminous substances for use in waterproofing and roofing; testing molded insulating materials, elec. porcelain, elec. insulating oils, rubber products and woven textile fabrics; verification of testing machines. Recommended practices are given for: annealing of rolled and forged C-steel objects; heat treatment of C-steel castings; carburizing and heat treatment of carburized objects; radiog. testing of metal castings; laying sewer pipe. Standard definitions are given for: terms relating to heat-treatment operations, to wrought-Fe specifications, to metallog., to methods of testing, to sp. gr., to lime, to the gypsum industry, to refractories, to sewer pipe, to hollow tile, to paint specifications, to materials for roads and pavements, to coal and coke, to timber and to textile materials; the terms sand and slate; clay refractories. A standard rule is given for governing the preparation of micrographs of metals and alloys, including recommended practice for photog. as applied to metallog.

| L37 ANSWER 30 OF 33 CA  | PLUS COPYRIGHT 2004 ACS on STN          |
|-------------------------|-----------------------------------------|
| ACCESSION NUMBER:       | 1926:15603 CAPLUS                       |
| DOCUMENT NUMBER:        | 20:15603                                |
| ORIGINAL REFERENCE NO.: | 20:1911d-e                              |
| TITLE:                  | Metallic zinc powder as a paint pigment |
| AUTHOR (S) :            | Nelson, H. A.; McKim, W. A.             |
| CORPORATE SOURCE:       | New Jersey Zinc Co.                     |
| SOURCE:                 | Research Bull. ( <b>1926</b> ) 26 pp    |
| DOCUMENT TYPE:          | Journal                                 |
| LANGUAGE :              | Unavailable                             |
|                         |                                         |

AB Results are given of practical tests: on steel and galvanized structures, as primer or as final **coat** on sections of a large industrial water tank; on buildings where the old paint was badly cracked; as a primer on sappy redwood; for miscellaneous purposes such as on **screens**, canvas roofs, etc., and Zn dust as a pigment in lacquer enamels; and as a tinting pigment in white-house paints. Among the conclusions are: Zn dust is at least equal to any other rust-inhibitive metal primer; it makes a gray finish paint of very high hiding power; and the film maintains its distensibility over long periods of time. For ordinary painting the proportion of ZnO is 10-25% of the weight of the pigment. Low acid number linseed oil should be used and acid driers must be avoided. The paints are easily prepared and cost considerably less than red **lead** paints.

| L37 ANSWER 31 OF :<br>STN | 33 BIOSIS COPYRIGHT (c) 2004 The Thomson Corporation. on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACCESSION NUMBER:         | 1983:271507 BIOSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DOCUMENT NUMBER:          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TITLE:                    | TANDEM DYE LIGAND CHROMATOGRAPHY AND BIOSPECIFIC ELUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                           | APPLIED TO THE PURIFICATION OF GLUCOSE 6 PHOSPHATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           | DEHYDROGENASE EC-1.1.1.49 FROM LEUCONOSTOC-MESENTEROIDES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AUTHOR $(S)$ :            | HEY Y [Reprint author]; DEAN P D G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CORPORATE SOURCE:         | DEP BIOCHEM, UNIV LIVERPOOL, PO BOX 147, LIVERPOOL L69 3BX,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                           | UK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SOURCE :                  | Biochemical Journal, (1983) Vol. 209, No. 2, pp. 363-372.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                           | ISSN: 0264-6021.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DOCUMENT TYPE:            | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FILE SEGMENT:             | BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LANGUAGE :                | ENGLISH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AB A total of 65          | immobilized triazine dyes were screened for their                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ability to pur            | rify the dual nucleotide-specific glucose-6-phosphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| dehydrogenase             | (EC 1.1.1.49) from L. mesenteroides. From this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| screen a negat            | tive (Matrex Gel Purple A) and a positive (Matrex Gel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Orange B) adso            | orbent were the best in terms of overall purification and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| vield and were            | e therefore combined to give the best purification.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Glucose_6_phos            | where debudres are a set of the s |
|                           | sphate dehydrogenase from L. mesenteroides was purified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

56-fold in a 2-step tandem chromatographic system using Matrex Gel Purple

A followed by Matrex Gel Orange B chromatography to a specific activity of 228 units/mg of protein in a final yield of 73%. A study of the elution characteristics of glucose-6-phosphate dehydrogenase bound to Matrex Gel Orange B by KCl (pulse and gradient) and biospecific eluents (pulse) was carried out. NADP+, NADPH and adenosine 2',5'-bisphosphate were the only effective biospecific eluents. A pulse of 50 µM NADP+ (1/2 column volume) gave a better purification than a 0-1 M KCl gradient and therefore was the preferred method of elution. Presaturation of the enzyme with various nucleotides was carried out to determine the effect on the subsequent binding of glucose-6-phosphate dehydrogenase to Matrex Gel Orange B. The results of these and biospecific-elution studies lead to the hypothesis of 2 possible schemes to explain the mechanism of the dye-protein interaction. Reusability, capacity of the adsorbent and effect of varying the ligand concentration were also studied in the purification of glucose-6-phosphate dehydrogenase on Matrex Gel Orange B.

|                   | 33 MEDLINE on STN<br>95077266 MEDLINE       |
|-------------------|---------------------------------------------|
|                   | PubMed ID: 7985945                          |
| TITLE:            | Excel: a new frontier in haemapheresis.     |
| AUTHOR :          | Zanella A                                   |
| CORPORATE SOURCE: | DIDECO S.p.A., Mirandola, Italy.            |
| SOURCE :          | Annales de medecine interne, (1994) 145 (5) |
|                   | 340-4.                                      |
|                   | Journal code: 0171744. ISSN: 0003-410X.     |
| PUB. COUNTRY:     | France                                      |
| DOCUMENT TYPE:    | Journal; Article; (JOURNAL ARTICLE)         |
| LANGUAGE :        | English                                     |
| FILE SEGMENT:     | Priority Journals                           |
| ENTRY MONTH:      | 199501                                      |
| ENTRY DATE:       | Entered STN: 19950116                       |
|                   | Last Updated on STN: 19950116               |
|                   | Entered Medline: 19950105                   |
|                   |                                             |

Haemapheresis is moving towards new prospects. The growing interest in AB stem cell collection, the increasing demand of single donor platelet units lead to a definition of a "new concept" of cell separator which can offer higher performance, higher selectivity and higher yield in order to guarantee superior quality and pureness of the collected product, but also higher treatment speed and easier usage, for improving user patient donor acceptability and safety level. For these reasons Dideco has developed the new Excel, an extremely innovative automatic blood cell separator, which opens new frontiers in the Haemapheresis field. The main technical features are summarized as following: automatic buffy coat level control through a CCD (charged coupled device), double eccentric-plate separation chamber (1 plate for every procedure), multi-processor system management, advanced user interface through a touch screen display, automatic fluid balancing system through load cell transducers, high-tech ergonomic design. All these innovative technologies are permitting an extremely high performance level higher PLT yield and lower WBC contamination (> 5 x 10(11) PLT with < 5 x 10(6) WBC--double leukodepleted PLT unit easy recoverable), lower procedure time (60 min for one PLT unit, 120 min for 2 unit), higher product quality (lower PLT activation, higher PLT reliability, lower complement activation-C3a), lower ACD consumption (higher withdrawal flow rates are possible), completely automatic procedure management, higher safety level, friendly and guided usage, customized protocols through a complete programmability. All these features and results also offer new standards for the field of haemapheresis through a new generation cell separator: Dideco Excel.

L37 ANSWER 33 OF 33 EMBASE COPYRIGHT 2004 ELSEVIER INC. ALL RIGHTS RESERVED. on STN ACCESSION NUMBER: 76134081 EMBASE

| DOCUMENT NUMBER:  | 1976134081                                                                                         |
|-------------------|----------------------------------------------------------------------------------------------------|
| TITLE:            | Radiation hygiene in photofluorography.                                                            |
| AUTHOR :          | Welde F.                                                                                           |
| CORPORATE SOURCE: | State Inst. Radiat. Hyg., Oslo, Norway                                                             |
| SOURCE :          | Acta Radiologica - Series Therapy, Physics and Biology,<br>(1975) 14/2 (187-194).<br>CODEN: ATHBA3 |
| DOCUMENT TYPE:    | Journal                                                                                            |
| FILE SEGMENT:     | 014 Radiology                                                                                      |
|                   | 035 Occupational Health and Industrial Medicine                                                    |
| LANGUAGE :        | English                                                                                            |

AB This paper comprises measurements and experiences from the surveillance of 36 photofluorographic units in Norway. From the measured doses and statistical data, the following mean doses to the whole population are calculated: mean bone marrow dose: 11.2 mrad/person/year; genetically significant dose: 0.045 mrad/person/year. Photofluorography contributes considerably to the total mean bone marrow dose from radiography. The genetically significant dose from photofluorography is of the order of promilles of the total genetically significant dose from diagnostic radiology. Under normal conditions (the door closed) the radiation level was considered safe at the position of the operator and elsewhere in the room on that side of the cabin. Measurements with the door open indicated that the practice of supporting persons during the exposure gives doses of the order of 1,000 times the normal when a lead rubber coat is not worn. The lead rubber curtain on the other side of the cabin affords limited shielding. There may be more than one working place in the laboratory during photofluorography. The unit should be positioned in such a way that none of these is located in front of the cabin opening. The results and experiences gained have led to the following instructions for the radiation protection surveys of photofluorographic units (besides the general recommendations of the ICRP): The tube potential should be at least 125 kV. Units with low tube potential will gradually be replaced. The following minimum filtration will be required: 85 kV 2 mm Al total, 125 kV 3 mm Al total. Units occasionally used for children must have an adjustable diaphragm. Ambulatory units used only for adults may have a proper fixed diaphragm. When examining children and pregnant women a lead insert in the diaphragm or a lead rubber skirt should be used. Fast films and proper processing must be used. The fluorescent screen has to be replaced if its sensitivity deteriorates or is considerably less than for newer photofluorographic screens. Photofluorographic units should not be used for examinations where it is necessary to support the patient. Cabins with one open side shall be so oriented that no working place is located in front of the opening, where patients should not wait either.